
Finite State Machine Parsing for Internet Protocols:
Faster Than You Think

Robert David Graham

Errata Security

robert david graham@yahoo.com

Peter C. Johnson

Department of Computer Science

Dartmouth College

Hanover, NH USA

pete@cs.dartmouth.edu

Abstract—A parser’s job is to take unstructured, opaque
data and convert it to a structured, semantically meaningful
format. As such, parsers often operate at the border between
untrusted data sources (e.g., the Internet) and the soft, chewy
center of computer systems, where performance and security are
paramount. A firewall, for instance, is precisely a trust-creating
parser for Internet protocols, permitting valid packets to pass
through and dropping or actively rejecting malformed packets.
Despite the prevalence of finite state machines (FSMs) in both
protocol specifications and protocol implementations, they have
gained little traction in parser code for such protocols. Typical
reasons for avoiding the FSM computation model claim poor
performance, poor scalability, poor expressibility, and difficult
or time-consuming programming.

In this research report, we present our motivations for and
designs of finite state machines to parse a variety of existing
Internet protocols, both binary and ASCII. Our hand-written
parsers explicitly optimize around L1 cache hit latency, branch
misprediction penalty, and program-wide memory overhead to
achieve aggressive performance and scalability targets. Our
work demonstrates that such parsers are, contrary to popular
belief, sufficiently expressive for meaningful protocols, sufficiently
performant for high-throughput applications, and sufficiently
simple to construct and maintain. We hope that, in light of
other research demonstrating the security benefits of such parsers
over more complex, Turing-complete codes, our work serves as
evidence that certain “practical” reasons for avoiding FSM-based
parsers are invalid.

I. INTRODUCTION

Parsers are responsible for translating unstructured, un-

trusted, opaque data to a structured, implicitly trusted, seman-

tically meaningful format suitable for computing on. Parsers,

therefore, are the components that facilitate the separation

of data from computation and, hence, exist in nearly every

conceivable useful computer system.

Any program that presents the contents of data files contains

a parser: word processors show documents, media players play

video or audio, databases store and retrieve arbitrary data.

More generally, any program that accepts input (interactively

or not) contains a parser to translate from the unstructured

input data to whatever internal structures the program uses to

process that input. The source of input varies, of course—it

could be bytes read off a disk, events from a keyboard or

mouse, or data over a network interface—but the basic task

remains the same: create structure from chaos.

As a result of this mandate, parsers are nearly always

tasked (explicitly or otherwise) with determining whether a

reasonable structure can even be derived from the chaotic

input; that is, parsers imbue input with trust. For example,

a firewall examines data attempting to enter or exit a network;

packets approved by the firewall policy are allowed through,

packets that are not approved are dropped or rejected. Having

passed through, internal machines assume these packets to be

more trustworthy than those that failed to pass muster at the

perimeter; the firewall has essentially blessed them with its seal

of approval. The same can be said of parsers for documents

or data files: if the parser finds a problem with the data file,

the program will (or at least should) emit an error rather than

attempt to load a broken file.

These examples highlight two vital requirements of parsers:

they must be correct, so that only valid input is blessed with

trust; and they must be efficient so that enormous documents

and torrential datastreams (for word processors and firewalls,

respectively) don’t bring systems to their knees. Correctness is

reasonably straightforward (though perhaps not “simple”, per

se), but efficiency has some interesting subtleties because it

encompasses all resources a parser might use. The obvious

resource to consider is CPU cycles but, at scale, memory

becomes an issue as well.

Both of these performance axes affect projects we have

worked on, best illustrated by masscan [4], an Internet port

scanner that can cover the entire IPv4 address space in under

6 minutes, at 10 million packets per second, from a single

machine. To achieve this rate, masscan is extremely efficient

in both the number of CPU cycles it spends parsing each

byte received over the wire as well as the memory it uses

to store state for the millions of simultaneous connections it

maintains. This scanning rate is an order of magnitude faster

than alternatives such as nmap [7] and Zmap [3].

Another project where performance reigns supreme is

robdns [5], a DNS server designed to service 10 million

requests per second. One interesting aspect of this project

is that responding to individual DNS requests is not the

only performance-sensitive operation: at its intended scale,

just parsing the DNS data (“zone files”) from disk is a

potential bottleneck! Some DNS servers, such as Knot [6] and

Yadifa [9], have optimized their parsing of DNS zone files but,

just like masscan outperforms its competitors, robdns is

2014 IEEE Security and Privacy Workshops

© 2014, Robert David Graham. Under license to IEEE.

DOI 10.1109/SPW.2014.34

185

2014 IEEE Security and Privacy Workshops

© 2014, Robert David Graham. Under license to IEEE.

DOI 10.1109/SPW.2014.34

185

2014 IEEE Security and Privacy Workshops

© 2014, Robert David Graham. Under license to IEEE.

DOI 10.1109/SPW.2014.34

185

faster than all of them.

Finally, an intrusion detection system (IDS) needs to not

only parse data, it must also search otherwise-opaque fields

for questionable patterns. For instance, where a typical HTTP

header parser would find the Host field and blindly return

all following characters through the end of line as the value,

an IDS needs to be able to search that value for potentially-

malicious contents. To analyze data at line speed, the parser

inside an IDS must be both fast, to keep up with data rates

in excess of 1 Gbps, and compact, to maintain state for a

potentially huge set of concurrent connections.

What’s the secret sauce? you ask. Finite state machines.
No way! you say. Way.
Not just finite state machines, but FSMs that parse in-

put byte-by-byte, sequentially, without backtracking, and are

constructed to maximize throughput by taking into account

architectural characteristics such as L1 cache hit rate and

branch misprediction penalties. In the remainder of this re-

search report, we will demonstrate that hand-written FSM

parsers can handle real-world protocols such as DNS zone

files, X.509 certificates, and HTTP headers; that these parsers

are extremely efficient with system resources; and that they

scale better than existing implementations in software such

as the nginx and Apache web servers and the openssl
cryptography library.

We next review finite state machines and how they apply

to parsing (Section II), then we describe the architectural

considerations we kept in mind while writing our parsers (Sec-

tion III), next we provide an overview of three of the parsers

we implemented along with performance metrics (Section IV),

discuss future directions (Section V), and, finally, conclude

(Section VI).

II. FINITE STATE MACHINES FOR PARSING

A finite state machine—also known as a deterministic finite

automaton (DFA)—is defined by a set of states, exactly one

of which is the start state, some subset of which are the

accepting states, a set of input tokens called the alphabet,
and a transition function that, given the next input token and

the current state, determines the next state. A DFA is said to

accept a particular input if and only if, starting in the start

state and repeatedly applying the transition function to each

input token in sequence, one winds up in a accepting state

when one reaches the end of the input. Any input that is not

accepted is rejected. The language of a DFA is the set of all

inputs it accepts; equivalently, the DFA is said to recognize
that language. Furthermore, the class of languages that can be

recognized by a DFA are called regular languages.

To parse a particular protocol, we require a DFA that

recognizes the language of all valid messages in that protocol.

Consider the task of parsing HTTP headers, an example that

we will refer to throughout this section. Without loss of

generality, and to save space, let’s assume we only have to

deal with a single header field: Host.

One way to represent a DFA is graphically; our toy HTTP

header parser is shown in Figure 1. The circles are states, with

s0 s1 s2 s3

s4s5s6s7

‘H’ ‘o’ ‘s’

‘t’

‘:’‘ ’

not ‘\n’

‘\n’

Fig. 1. A simple DFA that recognizes the HTTP “Host” header. Note that if
a transition does not exist for a given input character from a given state, the
entire input is rejected. State s0 is the start state and state s7 is the accepting
state.

s0 s1 s2 s3 s4 s5 s6 s7
‘H’ s1
‘o’ s2
‘s’ s3
‘t’ s4
‘:’ s5
‘ ’ s6
‘not \n’ s1 s6
‘\n’ s1 s7

TABLE I
TABULAR REPRESENTATION OF TRANSITION FUNCTION FOR DFA SHOWN

IN FIGURE 1. AN EMPTY CELL INDICATES IMMEDIATE FAILURE FOR A

GIVEN CURRENT STATE AND NEXT INPUT TOKEN.

the start state signified by a tailless arrow pointing to it and

the accepting states shown as double circles. The transition

function is shown as arrows from current state to next state,

labeled by the alphabet token that induces the transition. If

there is no appropriately labeled arrow given the current input

token, the entire input is rejected.

Equivalently, a DFA can be represented in tabular format;

Table I shows the same DFA from Figure 1 as such.

This DFA only recognizes a single line of an HTTP header.

We can compose several such DFAs to recognize the entire set

of headers, as shown in Figure 2. To save space, we have taken

a bit of a shortcut in notation by not including distinct states

for each character read, but those are easy to extrapolate.

A. Implementation Methods

In practice, there are many ways to implement deterministic

finite automata. One popular method is as a two-dimensional

array precisely like the one shown in Table I along with a loop

similar to this:

cur_state = start_state;
while(i < input_length) {
c = input[i];
cur_state = table[cur_state][c];

}

Alternatively, one could use a massive switch statement,

conditioned on the current state, where each case individually

sets the next state. Another option is to use a jump table, which

is similar to the tabular method described above, with the

exception that each entry is a function pointer to the handler

186186186

EOL

URImethod version

key value
‘:’

Fig. 2. DFA that recognizes HTTP headers, with the request on the first line,
followed by arbitrary key-value pairs on subsequent lines, ending with two
consecutive newlines. Solid edges represent any printable character, dotted
lines represent a space, dashed lines represent a newline. The unlabeled states
just eat spaces.

for that case. Finally, a true sadist (or masochist, depending on

your perspective) could desecrate Dijkstra’s memory by using

a complex pile of goto spaghetti.

These relatively naı̈ve approaches are quite widely used,

though they leave room for improvement, especially when

one keeps in mind the underlying hardware architecture upon

which these programs run.

III. DESIGN CONSIDERATIONS

We have identified a number of hardware design parameters

that affect parsing using DFAs. Some of these, such as cache

hit latency, help us calculate maximum theoretical throughput

for DFA-based parsers, whereas others guide our efforts to

reach this maximum.

A. Branch (Mis)prediction

As processor pipelines have grown deeper and deeper, the

importance of the branch prediction unit has increased: every

incorrect prediction induces a flush of the entire pipeline,

wasting precious cycles. Despite the fact that modern branch

prediction units have gotten extremely accurate (well above

90% for some workloads), the inherently unpredictable nature

of parsing random input runs the risk of running a pipeline

full of bubbles. Or does it?

As described above, massive switch statements are often

used to implement DFAs, with one loop iteration for each

input token. We have found, however, that the things we want

to parse frequently take the shape of surprisingly linear DFAs;

refer back to Figure 1 for such an example.

microarchitecture target platform pipeline depth
AMD Bobcat mobile 15 stages
AMD Bulldozer desktop/server 16 to 19 stages
ARM Cortex-A8 (in-order) mobile 13 stages
ARM Cortex-A9 (out-of-order) mobile 8 stages
IBM Power8 server 16 stages
Intel Core desktop/server 14 to 19 stages
Intel Silvermont mobile 16 stages

TABLE II
PIPELINE DEPTHS OF MODERN MICROARCHITECTURES.

Implementing each state as a distinct case in a switch
statement is certainly a viable approach but we can use our

knowledge of what we’re parsing to take a shortcut. We know

that there is only a single valid transition from, e.g., state s2 to

state s3, so we can avoid looping back around to the beginning

of the switch and instead fall through to the next state by

omitting the break statement in the code for s2. This saves

us cycles on a number of fronts: we take the branch prediction

unit out of the equation entirely, thus avoiding the danger of

an incorrect prediction; the processor then (correctly) performs

its speculative execution of state s3; and we maintain spatial

locality of the instruction cache.

Table II surveys the pipeline depths of a number of modern

microprocessor architectures. The deeper the depth, the greater

the impact of a missed branch prediction, and the more savings

we realize by eliminating as many branches as we can in

otherwise branch-heavy code like parsing.

B. Memory Overhead

The masscan Internet scanning tool achieves its staggering

scanning rate with a number of tricks, many of which are

intended to minimize the memory overhead of managing

millions of concurrent connections. While these techniques

don’t necessarily affect parsing, per se, we believe they are

instructive examples for those looking to implement high-

performance parsers (which is essentially what masscan is).

First and foremost, masscan bypasses the kernel network

stack and uses a NIC driver that deposits raw packets directly

to user memory. This avoids a great deal of switching between

user mode and supervisor mode in both hardware and software.

Recall that on every mode switch, the processor must flush

the pipeline! Avoiding these switches is extremely beneficial

to performance.

Secondly, masscan discards all fragmented packets with

the understanding that the sending machine will just re-send

the packets whole. Ignoring fragments allows masscan to

parse every frame sequentially, without the need to buffer

anything: the only memory it must devote to any given

connection is a few integers indicating its current state in the

parser. For example, due to using nested state machines, our

X.509 parser requires 58 bytes per TCP connection to store

its current state. At 10 million concurrent connections, that

amounts to 580 megabytes. In contrast, the Linux kernel uses

in excess of 2 kilobytes per TCP connection [8]—not counting

187187187

buffers for storing packet fragments. masscan is two orders

of magnitude more efficient in its use of memory!

C. Pattern Matching using Aho-Corasick

Parsers are used to assign semantic meaning to otherwise-

opaque data, and in many cases the parser isn’t immediately

concerned with the precise contents of the data. For instance,

when a web server parses incoming HTTP headers, one of the

fields it identifies is Host. All the parser will do is identify the

associated value (i.e., all characters following “Host: ” through

to the line terminator) and send that data up to a higher level

in the program for further intepretation.

There are, however, applications that benefit from putting

more logic in the parser; network intrusion detection systems

(IDS) and antivirus software are a few. Traditionally, IDSes

and antivirus software maintain a library of signatures (i.e.,

byte strings) they believe identify invalid and/or malicious

data; to perform their duties, they scan network or disk data

for the presence of these character strings. In DFA parlance,

these applications recognize the language of all strings that

contain any of the signatures as a substring.

We could, of course, construct DFAs for this purpose by

hand, but it turns out that Al Aho and Margaret Corasick fig-

ured out how to programmatically generate them many years

ago. Given a set of strings to search for, the Aho-Corasick [1]

algorithm produces a DFA that finds all occurrences of those

strings (verbatim) within a particular input string. Essentially,

it recognizes the language of all input strings that contain one

or more of the search strings within it (with some sugar on

top to take action whenever a search string is found). This

is precisely what intrusion detection systems and antivirus

software do!

masscan makes extensive use of Aho-Corasick parsers: to

find specific fields within HTTP headers, or X.509 certificates,

or values within fields, and so on. These automatically gen-

erated parsers are especially useful when matches require no

further processing. We found hand-written parsers were more

effective when the matched bytes required some processing,

e.g., converting ASCII integers to binary for later use, as in

the case of run-length encoded values.

D. Input Token Translation

Another technique to improve parser performance is to

compress the input token space with a translation function.

Because we’re parsing one byte at a time, our input alphabet

is technically the entire range of 256 possible values, but

(especially for ASCII protocols) many are not used in valid

parses. When we encode the transition function as a table,

this sparse use of the input token space results in a sparsely-

populated table. Even a relatively modest number of states will

therefore cause the table to, if not exceed the size of the L1

cache on its own, at least cause otherwise premature eviction

of useful entries.

To mitigate this, before we perform the transition table

lookup, we translate the raw input token to a tightly-packed

space of tokens that are meaningful in this particular parse.

If we need only concern ourselves with printable ASCII, this

technique reduces the memory footprint of the transition table

by at least 50%.

E. Cache Latency

Recall the loop shown in Section II-A for evaluating a

DFA against an input; it is a particularly tight loop, especially

because the body,

state = table[state][c];

can be executed as a single instruction in x86 assembly:

mov ebx[eax+ecx],%eax

Prior to execution, register ebx holds the base address of

table, eax holds the value of state, and ecx holds the

value of c. After execution, eax holds the new value of

state.

In the absolute best case, this memory-register operation

will result in an L1 cache hit. Modern processors are often

able to hide the latency of retrieving a value from cache by

executing instructions out of order. If we unroll the loop a few

times, however, we can see that each instruction depends on

the result of the previous:

mov ebx[eax+ecx],%eax
mov ebx[eax+ecx],%eax
mov ebx[eax+ecx],%eax
mov ebx[eax+ecx],%eax

The second instruction can’t complete until the result of the

first instruction has been loaded from cache.1 Therefore, we

conclude that the absolute lower bound on parser execution is

c cycles per byte, where c is the L1 cache hit rate in cycles.

This exposition isn’t merely academic. By understanding the

architectural limitations on the execution of parsers, we can

evaluate their performance against the ideal rather than against

the rest of the horses in the stable.

Additionally, we are better-informed when writing our

parsers. If we know the L1 cache hit rate is c cycles, then

we know we have c instructions we can execute between each

of those mov instructions in the parser’s inner loop. We can

use those cycles to do things like the input token translation

described in Section III-D and to check if we’ve found a

match. In the following section, we will show precisely how

this works.

IV. IMPLEMENTATIONS

As mentioned previously, we are more concerned with

comparing our parsers’ performance against the theoretical

maximum rather than other implementations. (We do plan

to compare against others, though; we will elaborate in Sec-

tion V.) In the following subsections, we describe the perfor-

mance of both synthetic microbenchmarks we have developed

as well as full-fledged applications that parse X.509 certificates

and DNS zone files.

1The presence of pipeline stages and superscalar execution present further
potential slowdows, but modern processors seem to be quite efficient at
mitigating these, as we will show in Section IV.

188188188

synthetic Aho-Corasick
Processor clock rate L1 speed max theo. asm-idx asm-ptr cycles/byte parse speed
AMD Bobcat 1.6 GHz 3 cycles 4.3 Gbps 4.2 cycles 3 cycles 6.770 1.89 Gbps
AMD Bulldozer (Piledriver) 4 GHz 4 cycles 8 Gbps 5 cycles 3.8 cycles 4.974 6.46 Gbps
Intel Atom (Cedarview) 1.6 GHz 3 cycles 4.3 Gbps 4.2 cycles 3 cycles 14.257 895 Mbps
Intel Core (Ivy Bridge) 2.5 GHz 4 cycles 5 Gbps 5 cycles 4 cycles 5.015 3.99 Gbps
Intel Core (Sandy Bridge) 3.2 GHz 4 cycles 6.4 Gbps 5 cycles 4 cycles 5.033 5.07 Gbps
Intel Core (Westmere) 2.13 GHz 4 cycles 4.3 Gbps 4 cycles 4 cycles 4.068 4.21 Gbps

TABLE III
PERFORMANCE METRICS FOR VARIOUS MODERN PROCESSORS, RESULTS OF RUNNING BOTH SYNTHETIC BENCHMARKS TESTING L1 CACHE LATENCY

AND A PARSER GENERATED BY THE AHO-CORASICK ALGORITHM.

A. Synthetic Microbenchmark

We wrote two programs to establish a lower bound for our

parser’s inner loop:

• asm-idx is a series of raw x86 assembly instructions

that look up values in a two-dimensional array such that

the result of one instruction is used as an array index in

the subsequent instruction.

• asm-ptr is the same as asm-idx with the exception

that it adds a pointer dereference, the purpose being to

exercise an alternate addressing mode in Intel’s imple-

mentation of the x86 ISA.

We measured execution time of our programs using the

rdtsc instruction. The results of running these synthetic

benchmarks on six different processors are shown in the

asm-idx and asm-ptr columns of Table III. Notice how

the performance of asm-ptr closely tracks the L1 cache hit

latency for each processor. Intel’s desktop- and server-centric

microarchitectures (Ivy Bridge, Sandy Bridge, and Westmere)

are especially good, where the Atom and AMD’s Bobcat and

Bulldozer cores lag by one clock cycle.

We also generated an Aho-Corasick parser that searches

for six words within the text of the King James Bible.

Our performance measurements for this are shown in the

final two columns of Table III. Especially important are two

comparisons:

• cycles per byte parsing rate we observed in our code

(column 7) and L1 cache hit rate (column 3);

• and observed parsing speed (column 8) and max theoret-

ical parsing speed (column 4).

Performance of the Aho-Corasick parser is especially good

on Intel’s Westmere architecture, getting within 2% of the

theoretical maximum. In contrast, performance is especially

poor on Intel’s Cedarview, achieving barely 20% of the

theoretical maximum. This is likely due in large part to the

fact that Cedarview is an in-order architecture; Intel’s newest

Atom processors (Silvermont) use an out-of-order execution

model that we expect would realize significant benefits for the

workloads we care about.

B. X.509 Certificates

The internationally-recognized X.509 standard [2] defines a

format for cryptographic certficates in public key infrastruc-

ture (PKI) systems. One of the tasks for which we created

masscan was performing a census of PKI certificates pre-

sented by Internet-accessible machines. To meet our perfor-

mance goals, we needed a much faster method of parsing these

certificates than that provided by the widely-used OpenSSL

library.

Certificates are so large that they typically cross TCP packet

boundaries. That means block parsers, which is what OpenSSL

uses, must first allocate a large chunk of memory to which it

then copies the contents of multiple packets as they arrive.

Moreover, SSL may fragment a certificate in addition to

fragmentation that may be induced at the TCP layer, meaning

that multiple buffers are used and many copies are performed.

This requires not just CPU cycles, but also many kilobytes

per TCP connection; kilobytes we don’t have to spare when

attempting to support 10 million simultaneous connections.

As you have probably guessed, masscan solves this prob-

lem in part by using a streaming parser for X.509 certificates

(in addition to the userspace TCP stack discussed in Sec-

tion III-B. Due to the complexity of the standard, we in fact

use several nested state machines and thus require 58 bytes

to remember the state of each connection, plus 100 bytes to

buffer specific fields that we extract. Even so, we use two

orders of magnitude less memory than OpenSSL running on

the kernel’s TCP stack.

C. DNS Zone Files

DNS has two formats: an on-the-wire format for transmit-

ting data between machines and a file format for storing the

database on disk. One popular format for this file is the “zone

file” popularized by BIND and later supported by many other

servers. (Listing 1 shows a typical example.) On startup, the

DNS server must parse this text file to build its in-memory

database before servicing any client requests.

Very large zone-files can take a long time to parse, incurring

a long delay before the DNS server can begin responding

to requests; a delay which exacerbates unexpected outages.

For reference, the zone-file for the “.com” top-level domain

presents a particularly difficult problem: it contains 200 mil-

lion domains and is over 8 gigabytes in size. BIND can take

2000 seconds to parse and load this file; other DNS servers,

such as yadifa and knot-dns, have focused on improving this

problem and can load it in about 450 seconds.

We have written a prototype DNS server that parses and

loads the “.com” zone-file in 233 seconds using a state-

machine parser and a single thread on similar hardware

189189189

$ORIGIN example.com.
$TTL 1h
example.com. IN SOA ns.example.com. (

2007120710 ; serial number
1d ; refresh period
2h ; retry time
4w ; expiration
1h ; max cache time
)

example.com. NS ns
example.com. NS ns.somewhere.example.
example.com. MX 10 mail.example.com.
@ MX 20 mail2.example.com.
@ MX 50 mail3
example.com. A 192.0.2.1

AAAA 2001:db8:10::1
ns A 192.0.2.2

AAAA 2001:db8:10::2
www CNAME example.com.
wwwtest CNAME www
mail A 192.0.2.3
mail2 A 192.0.2.4
mail3 A 192.0.2.5

Listing 1. Example DNS zone file

(Westmere 2.13 GHz). Parsing the zone-file takes 42 seconds,

with the remainder of the time taken inserting the parsed

data into an in-memory database. There is no way to directly

compare the parsing efficiency with the other DNS servers,

but this demonstrates that a state-machine parser is useful for

systems that focus on speed.

A more direct comparison is comparing our DNS parsing

code to wc, the standard UNIX word-count program. Whereas

parsing a zone-file is quite complex, counting characters,

words, and lines is simple. On the same system (IvyBridge

3.2 GHz), our DNS program parses the “.com” zone-file in 35

seconds of user-time, whereas word-count takes 103 seconds

of user-time.

V. FUTURE WORK

As this is a research report and not a full-fledged research

project, we envision a great deal of work to strengthen the

promising results presented.

We plan to pick apart a suite of existing applications that

contain parsers for Internet protocols to see how they work.

Specifically, we are interested in the methods employed by

nginx, Apache, openssl, Yadifa, and Knot to parse HTTP

headers, X.509 certificates, and DNS zone files. We plan to

extract the parsing routines from these pacakges as much as

we can to compare their performance against our own parsers.

We also hope to precisely quantify the benefits of the various

optimization techniques we described in Section III.

Using the lessons we learned from this investigation, we

plan to produce a system to generate DFA-based parsers

tailored to the characteristics of the hardware they are to be run

upon. Ideally, we would feed in parsing rules and architectural

parameters such as L1 cache hit rate and produce a tuned

binary.

VI. CONCLUSION

In the preceding sections, we have described the demanding

applications that drove the designs and implementations of

our parsers, and the not-at-all-novel but still (in our opinion)

underappreciated finite state machine as a tool to help us

meet those demands. Being mindful of the underlying hard-

ware architecture, we have measured the maximum theoretical

throughput of FSM-based parsers and have demonstrated that

the parsers we have written for real-world applications such

as text searching can, in the best case, achieve performance

within 2% of that maximum. We have also presented other

optimization techniques we have employed that help us hit

our performance targets which, while perhaps not directly

applicable to parsing in specific, nonetheless can serve to guide

those looking to implement tremendously scalable systems.

It is our hope that this research report serves as evidence

that arguments such as “they don’t scale” and “they can’t

parse meaningful protocols” are invalid when considering

using finite state machines for parsing real-world protocols.

Additionally, we hope that the cycles-per-byte metric presented

in Section IV, along with the target of meeting the L1 cache

hit latency, receive higher visibility among those looking to

implement parsers where performance is paramount.

REFERENCES

[1] Alfred V. Aho and Margaret J. Corasick. “Efficient

String Matching: An Aid to Bibliographic Search”. In:

Communications of the ACM 18.6 (June 1975).

[2] David Cooper et al. Internet X.509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280. May 2008. URL: http : / /www. rfc -

editor.org/rfc/rfc5280.txt.

[3] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.

“ZMap: Fast Internet-Wide Scanning and its Security

Applications”. In: Proceedings of the 22nd USENIX
Security Symposium. 2013.

[4] Robert David Graham. MASSCAN: Mass IP port scan-
ner. URL: https : / / github . com / robertdavidgraham /

masscan.

[5] Robert David Graham. robdns: a fast DNS server. URL:

https://github.com/robertdavidgraham/robdns.

[6] Knot DNS. URL: https://www.knot-dns.cz/.

[7] Nmap. URL: http://nmap.org.

[8] Kumiko Ono and Henning Schulzrinne. “One Server

Per City: Using TCP for Very Large SIP Servers”. In:

Principles, Systems and Applications of IP Telecommu-
nications. Services and Security for Next Generation
Networks. Ed. by Henning Schulzrinne, Radu State, and

Saverio Niccolini. Springer-Verlag, 2008.

[9] Yadifa. URL: http://www.yadifa.eu/.

190190190

