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Abstract—Programming languages have long incorporated
type safety, increasing their level of abstraction and thus aiding
programmers. Type safety eliminates whole classes of security-
sensitive bugs, replacing the tedious and error-prone search for
such bugs in each application with verifying the correctness of
the type system. Despite their benefits, these protections often
end at the process boundary, that is, type safety holds within a
program but usually not to the filesystem or communication with
other programs. Existing operating system approaches to bridge
this gap require the use of a single programming language or
common language runtime.

We describe the deep integration of type safety in Ethos, a
clean-slate operating system which requires that all program
input and output satisfy a recognizer before applications are
permitted to further process it. Ethos types are multilingual
and runtime-agnostic, and each has an automatically generated
unique type identifier. Ethos bridges the type-safety gap between
programs by (1) providing a convenient mechanism for specifying
the types each program may produce or consume, (2) ensuring
that each type has a single, distributed-system-wide recognizer
implementation, and (3) inescapably enforcing these type con-
straints.

1. INTRODUCTION

LangSec posits that trustworthy software which accepts
untrusted inputs must define a context-free language L of ac-
ceptable inputs and must recognize any input against L before
processing it [49]. This formal approach prevents (1) exposure
to unsanitized inputs due to an incorrect recognizer, and
(2) inconsistent recognizers. Recognizers can be small, simple,
and formally verified; many tools exist that can help implement
such recognizers in individual applications.

One way of providing LangSec is through a type system. In
general, applications can contain untrapped errors—where an
error goes unnoticed and computation continues—and trapped
errors—where an error is detected and computation stops [16].
Untrapped errors are particularly pernicious since they result
in arbitrary behavior. Sassaman et al. identified consequences
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that arise from poor input handling, including X.509 certificate
ambiguity, IDS evasion, stack-smashing attacks, injection at-
tacks, and format string attacks [49], [48]. Type safety prevents
untrapped errors and can reduce trapped errors.

We describe here Ethos’ distributed type system, Etypes.
Ethos is an experimental clean-slate Operating System
(OS) which is designed to make it easier to write robust
applications—that is, applications which withstand attack. Be-
cause of the large number of attack vectors against applications
in traditional software systems, it is a daunting task to create
robust applications on traditional systems. Ethos eliminates
many application attack vectors in the OS layer, so that
application programmers do not need to deal with them. This
is in keeping with Ethos’ design goal of providing security
over compatibility, simplifying application development and
resulting in programs which are less prone to attack.

Processes on Ethos send data to other processes—either
directly through Inter-Process Communication (IPC)! or in-
directly through the filesystem—in the form of typed objects.
Ethos subjects all I/O to recognizers which trap any ill-formed
message. In general, inputs to the Ethos OS are either the result
of user-space writes or arriving network packets.

The filesystem is the most important namespace for an OS,
and Ethos both continues and extends the use of the filesystem
namespace. In Ethos, type definitions exist in the filesystem,
the filesystem names IPC channels in addition to files, and
the filesystem bears a type label for each file/IPC channel.
This bears some resemblance to the design of access controls
in traditional OSs. OSs that subsume application-level access
controls increase application programmer processing fluency
because programmers no longer needed to build access con-
trols into every program. Our experience is that programmers
similarly benefit from Etypes.

The use of types throughout Ethos is extreme. Rather than
using existing, low-level, and often ad hoc protocols, Ethos
protocols are always generated from type descriptions. This

Both local IPC and networking share one API on Ethos (§IV-C).
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reduces application code, and thus chances for error. Our type
descriptions are high-level and processed in a way that makes
it easy to keep applications mutually intelligible. When it is
necessary to use legacy protocols, we use protocol proxies to
translate between Etypes and legacy protocols.

Etypes’ contributions include:

C1 Each Ethos process’ input and output channel has a
declared type. Ethos guarantees that all input and output
is recognized with respect to its declared type (§1V-C).

C2 Ethos tightly integrates PL/system support (§IV-B,
§IV-C), which reduces application code and eliminates
type errors.

C3 Etypes has had an unexpected impact the design of
Ethos’ scripting language.

C4 Ethos couples recognition with authorization to re-
strict at runtime which types a given application can
produce or consume.

C5 Etypes provides a refined, naming-authority-free Uni-
versally Unique ID (UUID) generator for types (§IV-D).
Types are independently defined and guaranteed not to
conflict with types created elsewhere, yet equivalent types
will always receive the same UUID.

Semantics implemented in the OS have significant re-
quirements beyond those implemented in user space. An OS
mechanism must be efficient, it must compose well with other
OS mechanisms, it must be secure, it must be robust even
if incorrectly used, and it must have a well-defined interface.
Typically, an OS supports multiple languages to support a va-
riety of uses. Despite these challenges, OSs provide complete
mediation over interaction with the outside world, and so they
are an ideal place to put security-sensitive abstractions.

We shall show in §V that Etypes provides stronger security
services, removes many pitfalls which cause security holes,
and reduces application lines-of-code (and therefore attack
surface). We first survey types in general, including a series of
definitions (§II). In the remainder of the paper, we discuss an
overview of Etypes (§III), our design (§IV), evaluation (§V),
and related work (§VT).

II. GENERAL DISCUSSION OF TYPES AND OSs

Programming Languages (PLs) can be untyped, in which
variables can hold values of any type; or they can be typed,
in which each variable is restricted by a type [16]. Type-safe
PLs have no untrapped errors. This is ensured either by an
untyped language runtime performing dynamic checking or by
statically checking a typed program prior to execution. (Some
languages have features that require dynamic checking, even
though most of the language is statically checked.) Go is a
typed language, LISP is an untyped language, and assembly
is a language that is both untyped and unsafe.

Traditional OSs are untyped and have untrapped errors
both internally and in their interaction with applications. As
examples, OSs themselves often contain buffer overflows, and
the read and write system calls found in POSIX process
untyped byte sequences. Due to the latter, these OSs have little
opportunity to sanitize program input, which in turn allows
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applications to receive ill-formed data. All too often, this leads
to silent and unpredictable application failure.

Before adding a type system to an OS, one has to decide
the properties that such a type system should provide. There
are a number of specialized type systems in use in PLs,
including linear types [53], which ensure at most one reference
to each object; dependent types [41], where values influence
types; and union types [33], which allow performing only
operations valid for two or more types. These type systems
provide increased strength, yet for the reasons that follow, they
presently appear to be too restrictive for inclusion universally
at the system level.

It is best if an OS is multilingual. There are different ways of
composing things in an OS, some of which are quick and dirty,
others of which need meticulous construction, and yet others
of which benefit from different programming paradigms. More
exotic type systems either (1) rule out certain PLs or (2) cause
an impedance mismatch when a PL is shoehorned into a
system with an ill-fitting type system. We don’t know what
PL will be the most important for Ethos; thus we designed a
simple type system for Ethos which is intended to provide a
better match for popular type-safe PLs. We discuss language
needs further in §IV-B.

It is a key thesis of the Ethos project that today’s systems do
not compose well, resulting in overall code bases which are
at least an order of magnitude larger than is needed. These
bloated code bases arise from OSs that are implemented as
a series of low-level mechanisms to maximize the degree of
implementation freedom. In contrast, although Ethos’ higher-
level mechanisms can provide any functionality, Ethos virtu-
ously restricts implementation freedom. Comparing Ethos to
traditional OSs is akin to comparing higher-level and lower-
level PLs.

A final consideration is versioning, where types change
across software revisions. In an OS, objects are longer-lived
than in a PL, and thus versioning is more important. We
wanted the type not to be too specific, since this would lead to
more versions. It is desirable to automatically convert between
versions; Ethos supports this by maintaining sufficient type
information in the filesystem. But when automated conversion
is not possible, we wanted to eliminate errors resulting from
type-version mismatch, especially for large-scale distributed
use. In §IV we discuss Etypes’ UUIDs which satisfy both
conversion and detection requirements.

III. ETYPES

On Ethos, applications only read and write whole objects,
thus preventing short or long reads/writes [55]. A system call
that writes object o will either succeed if o is well-typed or
return an error without application side effects. Reads are also
guaranteed not to return an ill-typed object. Managing side
effects in this way simplifies application development, and is
a strategy shared with other systems [37].

Here we present a high-level introduction to Etypes. We
later describe in §IV the particulars of how application pro-
grammers make use of Etypes, as well as the tight integra-



Type eNotation eCoding
b byte little-endian signed or
Integer i intX unsigned X-bit integers,
u uintX where X is 8, 16, 32, or 64
Boolean b bool unsigned 8-bit integer
Floats 1{ I:ggigi little-endian IEEE-754
Pointer p T enc. method || value
Array  a [n]T values
Tuple t[]JT length || values
String s string length || Unicode values
Dictionary  d [T]S length || key/value pairs
Structure N struct {...} field values
Union Munion {...}  uint64 union tag || value
Any a Any type’s UUID || value
RPC F(To,Ty,...,T,) uint64 func. ID || args.
Annotation [text] n/a: contributes to UUID

[see filename’]

TABLE I: Primitive, vector, composite, and RPC type
eNotation and eCoding; UUIDs are encoded as arrays of bytes;
lengths are encoded as uint32; T is an arbitrary type; || is
concatenation.

tion between Etypes and Ethos. With Etypes, programmers
specify types and Remote Procedure Call (RPC) interfaces?
using Etypes Notation (eNotation) which, like External Data
Representation (XDR), is a data description language. Etypes
provides three fundamental operations: encode, which takes
a PL type and serializes it to our wire format, called Etypes
enCoding (eCoding); decode, which takes an eCoding and sets
an appropriately-typed PL variable to its value; and recognize,
which Ethos uses to implement recognition.

A. Etypes Notation

eNotation describes types using a syntax based on the Go
programming language. Table I lists the eNotation types, a
syntax example for each, and their corresponding eCoding.
Primitive types include integers (both signed and unsigned),
booleans, and floats. Composite types include pointers, arrays,
tuples, strings, dictionaries, structures, discriminated unions,
any, and RPC interfaces. Unions, any types, and RPCs warrant
further description.

Unions and any types: eCoding is implicitly typed, with
two exceptions: unions and the any type. A union may be
instantiated to one of a specified set of types and an any
may be instantiated to one of the set of all types. When a
program encodes an object as either a union or any type,
Etypes includes an indication of the object’s actual type in
the encoding.

RPCs: An Etypes RPC interface specifies a collection of
RPC functions. Etypes RPCs are built from stub and skeleton
routines, similar to Open Network Computing (ONC) RPC
or CORBA. Although eNotation specifies RPC functions in a

2We consider an RPC interface a type for generality; RPCs are recognized,
encoded, and decoded as with other types.
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Certificate struct {
header CertificateHeader
[‘ABA transit number in MICR form ‘]
bankld uint32
[ ‘From account; bank’s num. std. ‘]
fromAccount []byte
[‘To account; bank’s num. std. ‘]
toAccount [1byte
[“Transfer amount in US dollars ‘]
amount uint64

— O 0 00NN B W =

Fig. 1: An eNotation structure representing a bank transfer
certificate

traditional way, the Etypes implementations are in fact one-
way—they do not have direct return values. Instead, a callee
returns a value by invoking a reply RPC. This supports both
asynchronous and synchronous communication, and it also
enables multiple RPC return values, even in languages whose
native procedures support only a single return value. One-way
RPCs are a very simple, yet entirely general, mechanism.

B. Binding semantics to types

Ethos separates recognition from processing. However, there
may be semantic restrictions beyond Ethos’ type system that
an application could violate. For example, an integer might
represent time, which should increase monotonically. Or, a
type might contain pointers but prohibit cycles. In Etypes,
these considerations are left to applications—there is an in-
herent trade off between generality and safety in a system-
wide type system. These higher-level semantics are called
processing invariants.

eNotation’s annotations informally describe the semantics
associated with types. Annotations (1) contribute to a type’s
UUID, binding syntax and semantics together, (2) differentiate
structurally identical types, and (3) express integrity require-
ments outside the scope of the type system (i.e., process-
ing invariants). Application programmers, administrators, and
users refer to a type’s annotations to determine the meaning
of an object of that type, and thus annotations minimize
the semantic-level difference [6] among Ethos users. Etypes
annotations go beyond traditional comments because they
contribute to a type’s UUID. We describe how these UUIDs
integrate with Ethos’ recognition in §IV-C.

Consider the cryptographic certificate type described in
Figure 1, a digitally signed bank transfer order. This type
contains a certificate header and four certificate-specific fields:
a bank ID, two account numbers, and the transfer amount. The
annotations, for example the one that describes the bankld field
as an American Bankers Association transit number (at line 3),
narrow the semantic-level difference by carefully describing
the meaning of these values. More complex annotations can
be included from an external file referenced by an eNotation
specification. (Field names such as bankld contribute to type
UUIDs too, but they are insufficient for detailed descriptions.)



IV. DESIGN

Etypes is best understood in the context of Ethos. Ethos’
design follows three principals:
(1) robust security services,
(2) higher-level abstractions, and
(3) abstractions that are designed to compose.

The first aims at providing the protections commensurate with
the contemporary threat environment, while the latter two aim
at reducing the pitfalls which cause security holes.

Ethos’ robust security services include encryption, au-
thentication, and authorization. Ethos encrypts all network
communication for confidentiality and integrity, authenticates
all services and users, and subjects all communication to
authorization. We discuss Ethos network encryption and au-
thorization elsewhere [44], [45]; here it suffices to say that
these protections are complementary to Etypes.

We discussed the impact of higher-level OS abstractions
and composibility in §II. The abstraction we focus on here
is, of course, types. We discuss the composition of types
with the filesystem, I/O system calls, and PLs. We will show
that higher-level mechanisms can be implemented in the same
number of lines of code as lower-level mechanisms, yet the
higher-level mechanisms provide more complete semantics.

We implemented Ethos on a paravirtualized machine pro-
vided by Xen 4.1 [7]. Ethos currently provides memory
paging, processes, encrypted networking, and a filesystem. We
have implemented 39 system calls in Ethos; ported the Go
and Python PLs to it; and built a shell, basic command-line
utilities, a remote shell utility, and a networked messaging
system.

The Ethos kernel (and PL runtimes) is presently written in
C, and applications are written primarily in Go. We have thus
far implemented Etypes support for the C and Go PLs, and
we have built an Etypes scripting language called eL. Using
authorization, Ethos prohibits applications in C3. We do this
because it is far too difficult to write secure programs in C.
Longer term, we plan to reimplement much of the Ethos kernel
in a type-safe language, but this is an implementation detail
orthogonal to our focus on Ethos abstractions here.

Targeting different PLs presents both a challenge and oppor-
tunity. In §IV-A, we describe how Etypes remains multilingual
and runtime-agnostic through the use of type graphs, and we
explain why multiple PLs are needed to meet the various
requirements of Ethos in §IV-B. We discuss issues related to
the deep integration of Etypes into Ethos in §IV-C.

Intra-program type checking requires care to ensure type
identifiers remain unique [10], [31], especially in loosely-
coupled distributed systems [47]. Thus Etypes identifies its
types using a type hash—a UUID based on a cryptographic
hash of a type’s description. The type hash is a fully distributed

3Ethos provides mandatory and discretionary access controls, with the
mandatory controls limiting the discretionary controls. Ethos authorization
is based on executable and user. In the standard configuration, the C compiler
cannot create executables. Even in a system which supports system devel-
opment, C can only be used by system developers, and not by application
developers.
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Field Description
Hash  Type hash, the UUID for the type
Name Mnemonic for the type
. Integer representing the type’s kind (e.g., uint32,
Kind .
struct) from a fixed enumeration
Annotation  Annotation for a type, struct field, or func.
Size  Size, if the class is a fixed-length array
Tuple of type hashes representing: the type of
a typedef, fields in a struct, type of elements in
Elems a vector, parameters/return values for an RPC
function, RPC functions in an interface, or target
of a pointer
Tuple of strings naming: the fields in a struct,
Fields parameters/return values for a function, or RPC

interface functions

TABLE II: The contents of a type graph node; one node exists
for every type specified

mechanism: it names each type in a unique but predictable
manner, yet it does not require any naming authorities. Type
hashes also support the requirement of versioning, because
changing a type will change its type hash. We describe the
algorithm to compute type hashes in §IV-D. Finally, we present
sample Ethos application code in §IV-E.

A. Type graphs

An Etypes type graph describes a collection of types (having
themselves been specified using eNotation) in the form of a
directed graph that contains type descriptions as nodes and
type references as edges. Type graphs are self-contained; for
all types T' in graph G, any type which T references is also
in G. For example, if a struct appears in a type graph, so do
the types present in the struct’s fields. Each type in a type
graph bears a type hash rather than the (local) names used in
its eNotation specification. Given the eNotation specification
of a series of types, a utility named et2g generates such a
PL-independent type graph along with its type hashes.

Ethos accepts only objects whose types exists in the
system’s type graph (§IV-C). User-space utilities such as
eg2source (IV-B) also make use of the type graph. Type graphs
themselves are stored as eCoding. Table II shows the contents
of a type graph node.

B. PL integration

Our type system is multilingual, but it nevertheless deeply
affects the PLs Ethos supports. Here we discuss its impact in
terms of three different types of PLs: unsafe, statically-checked
PLs such as C; type-safe, statically-checked PLs such as Go;
and type-safe, dynamically-checked PLs.

For performance reasons, Etypes minimally relies on intro-
spection. Instead, it uses eg2source to generate code targeted
to a specific PL; given a type graph and output language,
the tool generates code used to encode and decode types. For
RPCs, eg2source creates stubs and skeletons, similar to ONC
RPC or CORBA.



Unsafe PLs: In the case of C, encode and decode require
compile-time type definitions, because C uses static typing.
On the other hand, types can be added to a running system,
so the kernel’s use of recognize requires that recognize be
table-driven and thus able to recognize types added after the
kernel has been compiled. Currently, encode and decode are
also table-driven, but unlike with recognize, this is not a
requirement. (Note that there is a distinction between types
encoded/decoded within the kernel during the course of its
execution—these must be known to the kernel at kernel-
compile time—and types encoded and decoded by applications
but merely recognized by the kernel—these need not be known
by the kernel at kernel-compile time.)

For C, eg2source generates tables which describe types, and
a library called libetn walks these tables to encode, decode,
or recognize the types. Since libetn depends only on external
malloc- and free-like functions, it easily integrates into both
the OS kernel and PL runtimes. Etypes simplifies kernel code
by subsuming tedious manual encode, decode, and recognition
routines.

Since C is not type-safe, C can have untrapped errors even
with Etypes, such as a mismatch between an eNotation type
and a C variable. However, C use in Ethos is limited to system
software, where it can be subjected to more rigorous code
inspection.

Type-safe, statically-checked PLs: Go is type-safe and
statically-checked, and we designed Etypes to fit well with
such languages. Each Go program contains only a fixed
number of compile-time types, and likewise, the eNotation
types associated with the external objects read or written by
each program are declared in advance and restricted by Ethos.
Such restrictions increase application security by reducing
an attacker’s ability to create weird input with which an
application must contend.

For Go, eg2source directly generates individual encode
and decode routines for each type, unlike C’s libetn- and
table-based implementation. Code which uses these routines
to transmit data of some arbitrary type 71" from one process to
another is shown in Figure 2. Figure 2a creates an IPC channel
and sends the value ¢ of type 7" on it. Figure 2b accepts the IPC
channel and receives an object of type 1" from it. eg2source
generates the procedures Ipc, WriteT, Import, and ReadT; thus
the system calls necessary to implement these operations are
hidden behind typed APIs for convenience (but even direct
use of the system calls will be checked by Ethos’ recognizer).
In keeping with Ethos’ goal of minimizing application com-
plexity, Etypes’ calls require no more application code than
untyped I/O calls in other OSs. However, Ethos calls do more,
reducing the total amount of application code.

We believe minimizing compositional code (in this case
between types and filesystem operations) simplifies program-
ming, reduces the chances for errors which can be exploited
by attackers, and makes programs more readable.

Type-safe, dynamically-checked PLs: Traditional applica-
tions benefit from statically-checked languages because such
languages provide higher integrity. However, utilities often
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1 enc,dec en. Ipc (hostname, serviceName)
2 enc.WriteT(&t)

(a) Create a connection and send a typed value t

3 enc,dec,user
4t dec.ReadT ()

en.Import (serviceName)

(b) Accept a connection and receive a typed value t

Fig. 2: Go code to create/accept an IPC and read/write a value.
T is an arbitrary type.

1 seen = {}

2 isATree(x)

3 forall f in fields(x)

4 if isPtr(f) then

5 if x.f in seen then

6 return false

7 seen = seen union { x.f }
8 if | isATree(x.f) then

9 return false

10 return true

Fig. 3: isATree in el

benefit from dynamic types. Consider traversing a filesystem
recursively and displaying the contents of files; here each
type may not be known at compile time, because additional
types can be added to the system after compilation. For such
requirements, we have built eL [42], a dynamically-checked
language that integrates tightly with Etypes. It is dynamically
typed, because el’s typing is in the filesystem (all variables
exist in the filesystem).

Specifying types is unnecessary within an el program,
because el uses the type labels from the filesystem in con-
junction with the type graph to type its objects. Pipes and
files support typed objects, and network programming, of
course, uses Etypes-based protocols. Thus there is no need
to write eL code for network protocols, or other boilerplate
code which is orthogonal to the application semantics. As a
result, programmers can use eL to quickly and easily produce
distributed programs.

Like the Bourne shell, eL supports terse command lines for
interactive use, but it also supports more traditional program-
ming constructions. Composite types simplify quoting in el
when compared to the Bourne shell; this phenomena bears
some resemblance to LISP, where quoted lists cleanly nest.
We discuss this further in §V-B.

eL allows printing, summarizing, extracting information,
and creating composites over the types in an Ethos system.
It uses a combination of generic operators, introspection, and
type-specific extraction to do this. For example, we have
written a program isATree (Figure 3) which will walk all
the pointers of a given object recursively to see if any node
is reachable by multiple paths. isATree makes no stipulation
about the type of objects it checks.

One of the great successes of UNIX is its text-based utilities.



Since UNIX was designed, these utilities have been diminished
as types have become richer. Generic utilities, which process
types dynamically, are essential to making Ethos accessible
and general. Etypes enables UNIX-like utilities that manipulate
richer data. This bears some resemblance to PowerShell [3],
but Ethos provides deeper integration of types with its system
call abstractions.

C. OS integration

Here we we describe how Ethos associates a type with
every IPC channel and file and how Ethos uses these types
to regulate system calls.

Recognition overview: Ethos verifies all network reads and
all (file/IPC/network) writes using recognize. Ethos ensures
that only the kernel may write to local files by design,* so
recognizers need not run on user-space filesystem reads, a
significant savings over application-based recognizers. Ethos
traps ill-formed writes, as an aid to correctness and to
provide problem diagnosis. Thus Ethos recognition behaves
analogously to an authorization reference monitor, except that
recognition restricts which data an application may read or
write rather than merely which objects the application may
read or write. We describe in §V-C how Ethos’ recognizer
and reference monitor interact to provide further protections.

Associating types with objects: Every object within a
given Ethos filesystem directory has the same type, that is,
a directory may contain only objects of a single type. As
Ethos uses filesystem paths to name IPC services, directories
determine the types of both files and IPC connections. While
their homogeneity increases the number of directories, it also
allows Ethos to enforce type safety transparently—a write need
not explicitly specify a type. We say that a directory declares
the type of its files. We provide an example Ethos program
that accesses a file in §IV-E.

In Ethos, types need only be specified when creating a di-
rectory, a relatively infrequent operation compared to file oper-
ations. Applications create directories with the createDirectory
system call, which accepts as parameters the parent directory
file descriptor dirF'd, a name, an authorization label, and a
type hash tHash:

createDirectory(dirFd, name, label, tHash)

We expect directory creation to primarily be handled by
administrative tools. If the directories are set up outside of a
particular application, then the application and type policy are
completely independent. In cases where a directory naturally
contains various types, declaring the any or union type allows
for heterogeneity in the style of traditional directories.

Files: In Ethos, the contents of a file can be any Etypes
object, from primitives (e.g., a 32-bit integer) to complex
entities made up of multiple objects (e.g., a tree). (Of course,
a particular file’s type must match its parent directory as
described above.) Ethos provides a writeVar system call to

4This is due to filesystem encryption, the use of Trusted Platform Module
(TPM), and memory protections.
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write an object to a file in its entirety (an Ethos file is not
a streaming object):

’ writeVar(dirFd, fleName, contents) ‘

The OS traps any attempt to write an object that is ill-formed
or not of the expected type.
The inverse of writeVar is readVar:

’ object = readVar(dirFd, fileName) ‘

Similar to writeVar, the read object must be well-formed to be
delivered to the application. To simplify further, rather than
directly use the above system calls, application programmers
use encode/decode interfaces which wrap the various read and
write system calls (§IV-E).

Seek: Ethos does not support the seek operation within files.
It may seem odd not to have file seeking; after all, video files
can span many gigabytes. But this is necessary to simplify the
handling of failures—an object is either of the correct type
and the readVar/writeVar system call succeeds or it is not and
the call fails without application side effects.

In designing Ethos, we had originally sought to provide a
file seek. But its semantics became complex when considering
typed objects because (1) objects have variable size and
hence computing an offset to a well-formed sub-object is not
straightforward; (2) the encoding is not normally visible to ap-
plications which only see decoded values; and (3) errors would
not be detectable until the whole file was read, complicating
error recovery. (3) is particularly troublesome, as application
effects could be introduced into the system as it reads well-
formed offsets, only to encounter an ill-formed offset later. At
this point, error recovery becomes unnecessarily difficult.

As a consequence of reading files only in their entirety,
Ethos bounds file sizes to conserve memory. While limiting
file sizes might at first seem odd, large files on traditional OSs
can exceed virtual memory. Thus even in traditional OSs, user-
space programmers must explicitly manage objects which do
not fit in (virtual) memory.

Anecdotal evidence and research indicates that large files
are increasingly important [23]. Ethos does support very large
aggregates—such as video files—as a directory of files. In
Ethos, traversal of files is replaced by traversal of directories.

Streaming IPC and directories: Both Ethos IPC and Ethos
directories are streaming entities, and Ethos enforces the type
of each write to these constructs (i.e., both IPC and directories
stream objects, not bytes). The write system call sends well-
formed and appropriately typed data out on a streaming
descriptor:

’ write(descriptor, contents) ‘

Conversely, the read system call reads from a streaming
descriptor. Again, the data must conform to the expected type.

’ object = read(descriptor) ‘

Streaming directories present a special challenge, because
their files must be named to preserve their order. The write
system call, when applied to a directory, creates a file named



with the current time; the read system call, when applied to a
directory, reads the next file in lexical order by filename. Thus
Ethos provides a mechanism to stream over a directory of files,
where each file is non-streaming (i.e., read in its entirety).

Seeking within an Ethos directory takes place at the granu-
larity of objects instead of bytes. For example, an Ethos video
format might encode each frame as a file. A program could
then implement video-fast-forward functionality that displays
only every nth frame by skipping over n—1 frames (files) and
then displaying the nth one. Similarly, rewind, fast rewind,
and go to a frame m minutes into the video can be easily
(and efficiently) implemented.

In its implementation of streaming directories, Ethos as-
sociates a current file name with each directory descriptor.
In the video format described above, each file name is the
frame’s number in the form of a text string. Seeking on a
directory consists of tracking the current frame number, adding
or subtracting the difference in frames, and then converting the
result to a string in order to read the file.

We provide program fragments making use of Ethos IPC
and directory seeking in §IV-E.

Networking: In Ethos, both IPC channels and network
connections are created by the ipc system call. (The IPC
case merely results from an empty hostname parameter.)
Etypes performs many networking chores at the OS-level,
including encryption, cryptographic user authentication, en-
dianess, alignment, recognition, and data value encoding, so
that networking just works. No Ethos application can receive
ill-typed data from the network, because first the data must
satisfy Ethos’ recognizer. Higher-level interfaces also allow
Etypes optimizations independent of application code.

Type graph: Ethos stores the system type graph in its
filesystem at /types. Both internal kernel types and types
specified in the course of application development are orga-
nized as collections, and both kernel and application-specific
collections are stored in /types/spec/c/, where c is a collection
name. Each file in collection directory c is a graph node, and
each file’s name is the type’s hash. The directory /types/all/
contains copies of all of the types described by the collections
in aggregate. The directory /types/all/ is loaded by Ethos at
boot time and reloaded for types created while the system is
running.

We envision that application type hashes will be installed by
Ethos’ packaging system and will remain until the installing
package and all of its nodes are removed. A type with hash
h can be removed from /types/all/ only when it is not present
in any directory /types/spec/+/ and it is not used as the type
hash for any directory.

Protocol proxies: Ethos cannot directly support legacy
protocols such as HTTP. We note that a second OS is always
present on the same host as Ethos, since Ethos runs on top
of a Xen Virtual Machine (VM). Thus there are two ways to
interact with a legacy protocol:

(1) run the legacy protocol entirely on the second OS, or
(2) run a protocol proxy on the second OS.
A protocol proxy speaks both eCoding and a legacy protocol.
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Fig. 4: A graph partitioned into Ey and

A domain-specific language would be useful to deal with
legacy protocols, and we have begun to build such a protocol
proxy for HTTP.

Interestingly, the design of such eNotation protocols can
provide security properties. This is because Etypes will limit
the data that can be seen by the application and thus rule out
issues such a mismatch between a length field and the actual
size of data.

D. Type hash algorithm

eNotation identifies types based on the hash of their syn-
tactic and semantic specification, ensuring each type has a
UUID. The possibility of cyclic types complicates this process
somewhat. For example, the eNotation in Figure 5a contains
the cycle V. — W — V. Here we describe the algorithm
typeHash which calculates a type hash for 7" when given a
type graph that describes 7. (Of course, the type graph is not
yet complete—it lacks each type’s hash, which we will now
compute).

Let ¢ be the type graph node corresponding to 7" and let
G = (N, E) be a directed graph. N is the set of non-primitive
eNotation definitions reachable from ¢, and E consists of the
edges [n,n’] where node n directly references node n'.

First, typeHash’s partition computes G’ (N,Ey), a
Directed Acyclic Graph (DAG) rooted at ¢ and spanning G.
(Given G, partition deterministically computes the same G’.)
The remaining edges, £, = E — Ey, are the back edges.
Figure 4 shows the partitioning of our sample type.

We next describe how typeHash propagates hashes in Fj,
and E;. Every node which references another node will
contain indirectly—through a series of intermediate hashes—
or directly the referenced node’s hash.

First, typeHash deals with the back edges using
intermediary. intermediary visits back edges e € Ej, calculat-
ing the hash of the parent node of e and substituting this hash
in e’s child node. Included in each hash is the parent node’s
eNotation definition, including the annotations which precede
it or are contained within it. These substitutions are done in
an order such that the hash is always on a node which has not
yet been re-written; this is ensured by noOut(n, E'y) which
means that n has no outgoing edges in E. Thus intermediary
computes hashes for all dependencies in Ej.

Next, typeHash uses collapse to compute type hashes for
each e € Ey, starting at the nodes which have no out edges and
chaining back toward ¢. After computing this hash, collapse
substitutes it for references to its type in other eNotation
definitions, removes e from E, and repeats until E is empty.

Finally, typeHash computes ¢’s hash.



1 T struct {

2 aRef xU

3 anotherRef *V
4}

5 U struct { anlnteger uint32 }
6 V struct { leadsToACyclicRef W }

7W struct { aCyclicRef %V }

hs = hash(T struct { aRef xha anotherRef xhs })
ha = hash(U struct { anlnteger uint32 })

h1 = hash(V struct { leadsToACyclicRef W })
ha = hash(V struct { leadsToACyclicRef xhs })
hs = hash(W struct { aCyclicRef xh; })

(a) eNotation

(b) Hash computation (subscript indicates order of computation)

Fig. 5: Sample eNotation structure containing the cycle V' — W — V, along with its hash computation sequence

Algorithm 1 typeHash(t)

: [E’f7 Eb] < partition(t)
: intermediary(Ey, Ey)

: collapse(Ey)

: return hash(t)

AW N =

Algorithm 2 intermediary(E;, Ey)
while 3[n”,n] € Ef | noOut(n, Ef) do

1:

2: for all [n,n'] € E} do

3 h < hash(n")

4 replace references to n’ in n with h
5: Ey +— Ep — {[n, n/]}

6 end for

7 By« By {{n",n]}

8: end while

We now provide an example of how typeHash calculates
the type hash for 7. Initially, E; = {[T, U], [T, V], [V, W]}.
[W, V] is a back edge and thus the only member of Ej.

The hash calculations are shown in Figure 5b. First,
typeHash calls intermediary(Ey, F). The only edges that
satisfy Line 1 are [V,W] and [T,U], and the only edge
that satisfies Line 2 is [W, V], so intermediary calculates the
intermediate hash h; and replaces V in W’s eNotation with h;.

Next, typeHash runs collapse(Ey). This calculates the hash
for U, labeled hy and propagates this hash to 7', replacing
its reference to U with hs. Likewise, collapse hashes the
definitions of W and V to compute hs and hy4. At each
step, typeHash replaces the child’s reference in the parent’s
eNotation with a hash. Finally, typeHash computes T’s type
hash, hs.

E. Sample code

Filesystem access: Figure 6 provides an example of en-
coding to and decoding from a file in Go. Figure 6a defines
TypeA, a struct containing an integer and an any. We assume

Algorithm 3 collapse(Ey)

while 3[n’,n] € Ef | noOut(n, E¢) do
h < hash(n)
replace references to n in n’ with h
Ey + Ey —{[n/,n]}

end while

1:
2
3:
4
5:
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TypeA struct {

1
2 W uint32
3 V Any
4}
(a) Example eNotation
5 value := en.TypeA {uint32(0), uint64(1)}
6 dir := syscall.OpenDirectory (someDir)

7 dir.WriteVarTypeA(fileName, value)

(b) Example code: encode an any type to a file

8 dir := syscall.OpenDirectory (someDir)
9 value := dir.ReadVarTypeA(fileName)
10 switch value.V.(type) {

11 case uint64:

12 }

// Of actual type uint64.

(c) Example code: decode an any type from a file

Fig. 6: Encoding/decoding an any type to/from a file

the presence of a directory someDir bearing the type hash of
TypeA.

Figure 6b demonstrates how to write (encode) TypeA to this
directory. Here Line 5 initializes value to a TypeA structure,
Line 6 opens someDir, and Line 7 writes value to a file
named fileName in the directory. The OS would trap any
attempt to write an object that is ill-formed relative to the type
associated with someDir (i.e., anything but a valid TypeA)
as a runtime error.

Figure 6¢ provides the read. Line 9 decodes a file to a native
Go struct using ReadVarTypeA. Trying to decode from a file
using the wrong decode function (e.g., ReadVarTypeB) would
result in a runtime error.

Streaming directories: §IV-C described an application that
made use of a video frame type to store a video as a series
of files within an Ethos directory, along with the system call
semantics that make this convenient. We provide a portion of
such a program in Figure 7. Each iteration of this listing’s loop
checks the current operation and either displays the next frame
or performs a video seek operation. Seeking within streaming
directories instead of within files allows Ethos to manipulate
whole objects without complex failure semantics.

Any types: We now describe the details of using the any
type as we depict in Figure 6’s Lines 10-12. The any type in



1 current = 0

2 dir := syscall.OpenDirectory (someVideoDir)
3 for {

4 op := getCurrentOp ()

5 switch op {

6 case PLAY:

7 current++

8 case BACK: // Back 30 objects.

9 current —= 30

10 case FORWARD: // Forward 30 objects.
11 current += 30

12 }

13 name := stringify (current)

14 frame := dir.ReadVarFrameType (name)

15 display (frame)

16 }

Fig. 7: Playing or skipping video frames; each frame is a file
of type FrameType, and ReadVarFrameType reads the named
file in the directory

1 | interface {
2 Add(i uint32, j uint32) (r uint32)
30}
(a) Example eNotation: an RPC interface
4 enc, dec := en.lIpc (hostname, serviceName)

5 enc.lAdd(0, 1)
6 dec.IHandle(enc)

(b) Example code: invoke RPC

Fig. 8: Invoking an RPC and handling the response, which
will be passed to a user-defined function by IHandle

TypeA must be of some actual type specified using eNotation
and present in Ethos’ system type graph. (Not shown is the
error handling for Lines 7 and 9 should the type be unknown.)
Encoding an any type encodes the type hash of the actual type
followed by the encoding of the actual type. Decoding an any
type uses introspection to identify the actual type (Line 10).
Once the actual type is determined, the application can act on
it appropriately.

RPC: Figure 8 provides an example of invoking an RPC.
Figure 8a defines an example RPC interface containing a
single function, Add. Not depicted is a detailed annotation
describing Add.

Figure 8b provides the body of an application. It opens a
network connection using Ipc and initializes enc and dec to
the returned encoder and decoder objects, respectively. These,
in turn, are wrappers for Ethos’ read and write system calls,
and also provide access to the generated RPC stub/skeleton
routines (recall that these too are abstractions of read and
write). The program next invokes enc’s IAdd function, thereby
making an RPC request. Calling dec’s IHandle function causes
the program to wait for an incoming RPC reply to |IAdd. The
programmer must also implement iAdd and iAddReply, but this
is not depicted (the generated skeleton routine IHandle will
dispatch to these functions). Attempting to write an ill-formed
request relative to the type associated with serviceName will
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cause a runtime error, and Ethos will not deliver ill-formed
responses to the application.

V. EVALUATION

Ad hoc input sanitization has been problematic, often due
to incomplete or inconsistent recognizers. Traditional OSs do
little to ensure data is recognized correctly or consistently, as
each application is left to include their own recognizers. Tools
such as bison, PADS [21], and Hammer [2] greatly aid in
writing recognizers and parsers, but their use is discretionary
and so it remains difficult to assess the safety of a large system
as a whole. These issues give rise to subtle vulnerabilities.

Here we describe how Ethos addresses many of these
vulnerabilities, before describing some performance results.
We ran performance experiments on computers with 4.2 GHz
AMD FX-4170 quad-core processors and 16 GB of memory.

A. The context-free equivalence problem

Jana et al. showed that because virus detectors and applica-
tions often parse data differently, detectors might miss infected
files [34]. For example, a detector might not scan an infected
file contained in an ill-crafted archive file, yet an extraction
program might unwittingly extract it. Such difficulties are also
encountered in defenses against Cross-Site Scripting (XSS)
attacks, because a server’s input validation must anticipate how
a client browser will parse HTML [13]. Similar patterns result
from multiple X.509 parsers [39], Flash parsers, and so on.

Ethos addresses the context-free equivalence problem by
(1) explicitly typing data, (2) removing ad-hoc recognizers
from applications and centralizing them at the system level and
(3) generating both system-level recognizers and application-
level encoders and decoders from a single eNotation descrip-
tion per type.

B. Injection attacks

In SQL- and OS-command injection attacks, an attacker
influences an unstructured string that is later parsed and acted
upon by another system component [29], [50]. For example, a
naive program might receive a file path from the network and
add this path to a command line sent as input to a UNIX shell.
An attacker could craft a path that contains the ‘;’ character,
which could cause the shell to execute arbitrary commands that
the attacker embeds in his path string. Such injection attack
vulnerabilities remain prevalent [40].

By forbidding unstructured communication. Ethos makes it
unnecessary to combine data (i.e., the path input described
above) with control strings (i.e., the ;’ character). On Ethos,
distinct types represent shell commands and database queries.
An application communicates such requests in the form of an
eCoding, and these encodings are equivalent to an abstract syn-
tax tree. Avoiding the need to parse unstructured text removes
the need for fragile sanitization routines and complicated
character escape sequences. These Ethos facilities are more
general than, but resemble, prepared SQL statements [12].



C. Semantic-gap attacks

Buccafurri et al. presented the Dali attack in the context
of digital signatures [15], and Jana et al. presented chameleon
attacks in the context of anti-virus software [34]. These attacks
arise because the types of the objects stored in filesystems or
communicated between processes are left ambiguous. Appli-
cations must guess object types, and, of course, sometimes do
so erroneously.

In a Dali attack, a signatory is fooled into producing a
certificate that can have two meanings, depending on which
application views it (Buccafurri showed that one file could
simultaneously be both a valid PDF and TIFF). Chameleon
attacks are similar; here a file’s type is inferred one way by
a virus checker but another by an application, resulting in a
falsely negative virus scan. In contrast, Ethos is type safe,
it inescapably labels each object with its type (§IV-C), every
application and utility interprets an object consistently by this
type, and each type includes a universal meaning as defined
by its annotations.

The depth of Ethos’ type enforcement warrants further
discussion. Consider two types ¢; and ¢ with identical struc-
ture; they nonetheless have different hashes in Ethos due
to their annotations (§I1I-B). An Ethos application commits
to a type when it reads or writes data as an Ethos object,
and Ethos thereafter enforces this chosen type. Of course,
an application could erroneously swap data of type t; for to
(i.e., read an object of type t; and write it as a structurally-
identical object of t5). This error is unavoidable through
Ethos’ structural recognition alone, but Ethos applications are
written in type-safe programming languages, which assume
responsibility for protecting against such mistakes within a
process. A user might also inadvertently execute a maliciously
written program, and that program could arbitrarily transform
data but nonetheless write it as a well-formed Ethos object of
the expected type; here Ethos’ authorization system can restrict
the application so that it can only write Ethos objects of type
t1. Ethos’ certificate system provides further countermeasures
against such swaps (see below). Even in these cases, there is
no possibility of encoding errors since ¢ and ¢, are identically
coded.

Another attack comes from short or long reads, in which
the object is partially read or data beyond the object is read
[55]. In these attacks, it is possible to get confused as to the
sources of input, mistaking untrusted for trusted information.
The interfaces provided by Ethos forbid short or long reads.

D. Certificates

A certificate is a signed statement, and the meaning of the
statement depends on the type of the certificate. For example,
Alice might want a certificate which requests a payment from
her bank account to a utility company for $100. Certificates
provide very strong protections, as anyone can determine
whose key signed it, but the signature prevents tampering since
the signature depends on the certificate’s content.

Ethos provides a sign system call:
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System  Component C Go Template YACC
libetn 1,278
Etypes et2g 826 329
eg2source 1,407 2,320
libtirpc 15,105
ONC rpcbind 5,264
rpcgen 5,479

TABLE III: Lines of code in Etypes (total 6,160) and ONC
RPC (total 25,848)

Component  Purpose LoC
MIME  Parse MIME 13,381
SMTP Interact using SMTP 1,487

POP3  Interact using POP3 2,958
libxml2  Parse XML/HTML 136,362

TABLE IV: Lines of code in selected libcamel components

sign(dirFd, fileName)

to sign certificates, and because sign is a system call, Ethos
can isolate keys from applications to forbid any other means of
signing [43]. For this system call to succeed, the process must
have signing permission on objects in the directory dirFd.
Moreover, the directory has only objects of a single type, so
that an application—such as a less-trusted program that needs
to generate signatures, but not on payment requests—cannot
accidentally (or maliciously) sign a forbidden certificate type
(i.e., meaning). Thus in Ethos permissions and types go hand-
in-hand to strengthen protections, in addition to the semantic-
gap protections described above.

E. Reducing lines of code

We describe next how eg2source reduces the Lines of Code
(LoC) in both the kernel and applications. Such a reduction
almost always benefits security, as it removes opportunities for
programmer error.

Kernel code: As previously discussed, we use libetn in the
Ethos kernel. Replacing our original hand-written RPC code
with eNotation machine-generated code added 1,124 while
removing 1,778 LoC, a net reduction of 654 LoC. More
importantly, this use of machine-generated code within Ethos
ensures all of the system’s RPCs implement formally specified
grammars.

This brings libetn, et2g, and eg2source into the Trusted
Computing Base (TCB) of Ethos. We note that the TCB
typically contains far more than just the kernel—for example,
encryption and many other code bases. The lines of code
associated with each Etypes component are listed in Table III.
Etypes’ language support is less than 25% the size of ONC
RPC, even though it supports both C and Go.

Application code: Applications also save many lines of
code through the use of eNotation. For example, existing mail
user, transfer, and delivery agents require much code to read
and write various protocols and formats, including Simple



Mail Transfer Protocol (SMTP) message envelopes, Internet
Message Format (IMF) message headers, and Multipurpose
Internet Mail Extensions (MIME). Each of these is described
by a series of Requests for Comments (RFCs). Furthermore,
configuration files also require parsing.

These requirements increase application size. We reviewed
libcamel [1], a library that implements many mail-related
encoders (SMTP, POP3, MIME) and parsers (XML/HTML),
and summarize its over 150,000 lines of code in Table IV.
Its encoders/decoders support communication and storage, and
its parsers are for languages which are used in networking
for both clients and servers. In each case, substantial code is
needed to handle input and output that can be ill-formed in
arbitrary ways.

To illustrate the use of Etypes, we wrote eMsg, a messaging
system for Ethos. eMsg is able to send and receive a message
whose type is defined in eNotation and invoke RPC functions
generated by eg2source. eMsg specifies the equivalent of
SMTP and IMF using only dozens of lines of eNotation.

E. Performance

Microbenchmarks: We first analyzed performance by mea-
suring the speed at which our implementation can recognize,
encode to, and decode from a memory buffer (Figure 9). We
wrote a series of microbenchmarks based on a collection of
types, including primitive, vector, and composite types. We
tested the speed of encoding and decoding using Etypes, XDR,
and JavaScript Object Notation (JSON). We also measured the
speed of recognition. An average for each test of encoding,
decoding, or recognition is provided.

Figure 9 depicts our results. For scalar types, XDR is the
fastest as it benefits from mandatory 32-bit alignment. XDR
also encodes pointers faster than Etypes, but this is because
Etypes supports cyclic and shared objects. JSON performs the
slowest due to its use of runtime type introspection. Etypes’
encoding of vectors containing scalar types benefits in the
common case of little-endian architectures. C Etypes encoding
is 0.136-22.823 (geometric mean: 0.985) times faster than
XDR, and its decoding is 0.180-33.084 (geometric mean:
0.995) times faster than XDR. Verification is a common oper-
ation in the Ethos kernel, and its speed is 1.375-9.568 times
faster than C Etypes encoding.

eMsg performance: Here we compare the performance of
eMsg to Postfix. Since Ethos encrypts and cryptographically
authenticates all network connections (More details about
Ethos networking may be found in parallel publications [45],
[44]), we configured Postfix with Transport Layer Security
(TLS) encryption and client certificate authentication. We
wrote a client program that connects to Postfix using TLS-
protected SMTP over a UNIX socket and sends 2,500 emails
to the server.

eMsg provides a client/server architecture roughly similar
to Postfix. Both the client and server perform type-related
work: the client-side kernel must check the well-formedness
of messages sent to the network and the server-side kernel
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Fig. 10: eMsg performance

must do the same for received messages, as well as check the
data that the receiver writes to a user’s spool directory.

Figure 10 shows the performance of eMsg and Postfix,
over three message sizes. Each bar consists of two parts: the
message itself and its overhead. We modified eMsg so that it
incurred an overhead roughly equal to Postfix, 1,229 bytes.
(eMsg’s natural overhead is smaller because its equivalent to
IMF headers is more terse.) For each message size, eMsg was
faster than Postfix.

G. Encoding density

eCoding’s use of implicit encoding reduces the size of
serialized data. There are a few exceptions, where we made
space-time tradeoffs. For an any, a type hash identifies the
actual type, requiring 64-bytes to precede the eCoding that
follows. eCoding encodes nil pointers with a single byte,
and the overhead for other pointers is also a single byte.
Fixed lengths, as for arrays, need not be encoded, but tuples,
strings, and dictionaries encode their length as a 32-bit value.
(Choosing a 32-bit length is possible due to the integration
of Etypes and Ethos—the maximum Ethos object size is
232_1; larger constructions can exist as a collection of objects
as discussed in §IV-C.) RPC calls contain a procedure ID
as overhead, and discriminated unions contain a 32-bit tag.
eCoding is not 32-bit aligned; thus it can encode values of
less than 32-bits more efficiently than XDR.

VI. RELATED WORK
A. Types, distributed programming, and operating systems

Our design of the eNotation type hash builds on the ideas
of network objects’ fingerprint [10], [31]. The important
additions provided by the eNotation type hash are the use of
a modern, cryptographic hash; support for semantic binding
through the use of annotations (§III-B); and a deep integration
into Ethos (§IV-C),

Early languages designed for creating distributed systems
include Argus and Emerald [36], [14]. Both were designed to
run on UNIX. Argus provides an object encapsulation called
a guardian and atomic actions. Emerald provides a single
mechanism to invoke both local and remote objects, and its
objects can migrate between nodes.

Java’s type system provides isolation within the JX OS [24].
JX OS does not require a Memory Management Unit (MMU)
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and instead implements software-based stack overflow and nil
reference detection. Singularity is written in Singfi, provides
Software Isolated Processes (SIPs), and uses linear types to
prevent shared-memory-related race conditions [32]. LISP and
Haskell have also been used to construct an OS kernel [26],
[28]. Ethos has a different goal than these OSs, namely to
remain intentionally multi-lingual.

SPIN allows applications to specialize the OS kernel using
extensions [8], [27]. Type safety allows SPIN to dynamically
link extensions into the kernel while isolating other kernel
data structures. Exokernels likewise maximally embody the
end-to-end argument [20]. This has been shown to provide
performance benefits, for example by allowing applications to
interact more directly with network interfaces [22].

Fabric labels objects with their security requirements and
provides distributed-system-wide, language-based access and
flow controls [38]. HiStar provides a simplified, low-level
interface and implements mandatory information-flow con-
straints without a language dependency [57]; DStar builds on
HiStar to provide information flow across hosts on a network
[58]. Developments in HiStar/DStar and Ethos are comple-
mentary: flow control will benefit from a higher system-level
semantic understanding of the types in a system.

B. Serialization and RPCs

Many mechanisms exist for object serialization. These
mechanisms range from the basic (e.g., htons) to the so-
phisticated. Care must be taken when serializing an object
containing pointers which might produce shared objects—
where two or more objects each reference a given object—or
cyclic objects—where an object contains a direct or indirect
reference to itself. Standard techniques exist to address these
requirements [30]. In an implicitly typed encoding, only data
is encoded, not its type. This reduces encoding size and
eliminates type field interpretation while decoding. In explicit
typing, encodings contain both type identifiers and data.

RPCs are procedure calls that are executed in another
address space [11]. Some RPC systems allow communication
with remote computers and others—often for performance
reasons—allow communication only within a single computer
[9], [56]. RPC systems are used both in applications and
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microkernels. Microkernel RPC is particularly performance-
sensitive; its performance is often highly optimized [35].

PL-specific serialization and RPC systems do not need
a multilingual Interface Description Language (IDL), and
provide conveniences such as the ability to pass previously
unknown objects such as subtypes to remote methods. PL-
specific systems include Python’ pickle [5], Java serialization
[25], C+’s Boost [4], and Java’s Remote Method Invocation
(RMI) [54].

Programmers who use certain PLs or runtimes benefit from
the convenience of PL-specific serialization, but many large
distributed systems require language independence. Multi-
lingual serialization and RPC systems include XDR [19],
ASN.1, JSON [18], Protocol Buffers [46], ONC RPC [51],
and CORBA [52]. Etypes behaves most like ONC RPC which
is multilingual, has an implicitly typed encoding, and generates
code based on type descriptions (eg2source follows rpcgen).
CORBA’s any types use identifiers that are ambiguous [17],
but Etypes uses UUIDs. Ambiguity can violate the type safety
of inheritance and any types.

VII. CONCLUSION AND FURTHER WORK

An OS-wide type system can make it easier to develop and
administer a robust distributed system. In several ways, Etypes
resembles ONC RPC which is multilingual, has an implicitly-
typed encoding, and generates code based on type descriptions.
But Etypes is unique due to its tight OS integration.

Ethos’ clean-slate design enables deep integration and
simple semantics. The filesystem plays a critical role in
maintaining type information and simplifying failure handling
through streaming directories. Surprisingly, Etypes impacted
the design of other parts of the system, most notably the
filesystem. Because of Etypes, Ethos does not have seeks
(it uses directories instead), treats directories as streaming
entities, and associates file metadata with the file’s parent
directory. This has a profound impact on Ethos’ shell, which
is type, rather than string, based.

Ethos performs recognition in its kernel, ensuring that
applications only see well-formed data that matches their
expected type. This provides important security protections
such as ensuring consistent treatment of objects, removing
parsing ambiguities, and removing substantial parsing code.



Parsing code is an especially attractive target for attackers
due to its size, complexity, and direct availability. Input is
traditionally the Achilles heel for security, a direct entry point
into the program which can be (and often has been) exploited
by attackers.

The greatest advantage of parsing over Etypes-style typing
is that parsing can recognize legacy protocols. On the other
hand, typing not only recognizes input but creates a data
structure for processing. Parsing typically creates such a data
structure in the actions associated with syntax recognition,
rather than as a formal component of the parser. Etypes
handles legacy protocols through the use of protocol proxies.

Ethos’ application APIs are as straightforward to use as
untyped APIs on traditional systems, while performing many
chores for the application programmer and thus reducing
application code size.

Ethos’ type hash allows separately developed components
to be later combined with predictable results, and annotations
remove type ambiguity while documenting processing invari-
ants. Most importantly, both eliminate the need for central type
naming authorities.

We plan to build on Etypes’ guaranteed properties. It is
already not possible to evade the OS’ conformance checks.
Currently, programmers are discouraged from directly using
Ethos’ low-level systems calls; a future implementation will
eliminate this access, forcing the use of Etypes’ encode/decode
routines.

One of the most interesting areas is the design and im-
plementation of elL. Etypes’ uniformity makes it easier to
write utilities and scripting languages which enable system
administrators to better manage their systems. Our goal is
to make Ethos accessible to system administrators through
eL scripts that are as useful as UNIX’s text-based scripting
languages even while manipulating richer types.
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