
RAPPD: A language and prototype for
Recipient-Accountable Private Personal Data

Yuan J. Kang
Department of Computer Science

Columbia University

New York, New York

e-mail: yuanjk@cs.columbia.edu

Allan M. Schiffman
CommerceNet

Palo Alto, California

e-mail: ams@commerce.net

Jeff Shrager
CommerceNet & Stanford

Symbolic Systems Program

Palo Alto, California

e-mail: jshrager@stanford.edu

Abstract—We often communicate private data in informal
settings such as email, where we trust that the recipient shares
our assumptions regarding the disposition of this data. Sometimes
we informally express our desires in this regard, but there is no
formal means in such settings to make our wishes explicit, nor
to hold the recipient accountable. Here we describe a system and
prototype implementation called Recipient-Accountable Private
Personal Data, which lets the originator express his or her privacy
desires regarding data transmitted in email, and provides some
accountability. Our method only assumes that the recipient is
reading the email online, and on an email reader that will execute
HTML and JavaScript.

I. INTRODUCTION

Doveryai, no proveryai. (Trust, but verify.)

– Russian Proverb

We often hand over our private data to others under the
assumption that there is mutual agreement about what is to be
done with it. For example, we give our doctors details of our
health and trust – that is, assume – that they will keep it to
themselves, store it in protected databases, and so on. Perhaps
they will communicate it to other doctors in the interest of our
health, but we assume that these communications will either
be confidential, or appropriately anonymized.

In this, and in the numerous similar transactions we engage
in every day, we are depending upon a complex network of
technologies, but even more so upon a complex network of
trust. Some of the details of what is intended to happen to
our data is explicated by policies such as HIPAA, or by the
licenses that we click “I agree” on, but never read. Even if
we did read these policies and licenses, we could not fully
understand them. In part this is because they are complex and
written in “legalese” (i.e., language deliberately meant to be
understood only by specialists), but also because they were
written and are agreed to by us in particular contexts, and
almost certainly do not cover all possible future cases. For
example, contracts, such as website privacy policies, can be
terminated by a bankruptcy court – a place where many, if not
all, of the startups who have your personal data will end up.

The privacy literature is replete with technical approaches
to securing, communicating, and storing private data that we
have shared, but for the most part, this literature rests upon
a fundamental, and fundamentally invalid assumption, that
there is a well defined agreement between the parties as

to the intended disposition of the data. In some very rare
cases, mostly when there are lawyers involved on all sides,
this is nearly true, but generally we take it on faith that the
parties with whom we share our private data are not going to
do something inappropriate with it. Yet it is not technically
difficult to state what one expects a recipient to do with
one’s private data. Indeed, we do this all the time in regular,
interpersonal communications.

When we communicate data to others in non-professional
settings, such as in emails or text messages, or even just
chatting, we generally assume that the recipient shares our
assumptions regarding the privacy of this data. If we are unsure
that our privacy assumptions are shared, i.e., when we think
that there is the possibility that these privacy assumptions will
be violated (or when we desire them to be violated, as, for
example, when we wish our friends to indeed tell other friends
that we are ill), we will almost always make this explicit. For
example, we might add a note to an email such as: “Please
don’t pass this on without asking me first.” or “Feel free to pass
this on to your [co-workers/friends/family].” And many of us
are familiar with the paragraph of disclaimers often appended
to professional communications, for example from lawyers or
doctors, with wording such as: “This message is intended only
for the indicated recipient...” Such implorations can become
quite contorted.

The “Creative Community” – writers, artists, film-makers,
and so on – have the formal concepts of copyright and
licensing, which explicate certain expectations of how their
products will be used, and a large, if controversial, body of
formal law, and even engineering mechanisms (such as DRM)
attempt to hold others accountable to the desires of the creator
or owner (e.g., via assignment) of a work. A significant fraction
of this Creative Community has adopted hybrid technical/legal
approaches, such as Creative Commons (CC) [1], to enable
creators/owners to specify how they intend their works to be
utilized, but no such means of specification or enforcement
exists for the sorts of things that we don’t usually think of
as “creative” (i.e., copyrightable) works, such as interpersonal
communications in email or SMS messaging, or the data that
we send to others or provide to online services. Yet our email
messages, at least, could easily be considered acts of creativity
(some more so than others!), and other sorts of data, such as
personal data, whereas not generally thought of as “creative”
per se, have most of the same properties, specifically of the
“creator” having certain desires regarding the disposition of the

2014 IEEE Security and Privacy Workshops

© 2014, Yuan J. Kang. Under license to IEEE.

DOI 10.1109/SPW.2014.16

49

2014 IEEE Security and Privacy Workshops

© 2014, Yuan J. Kang. Under license to IEEE.

DOI 10.1109/SPW.2014.16

49

2014 IEEE Security and Privacy Workshops

© 2014, Yuan J. Kang. Under license to IEEE.

DOI 10.1109/SPW.2014.16

49



data, as exemplified above. But in these cases we are generally
at the whim of the assumptions, or verbal pleadings described
above, with regard to what actually happens to the data that
we have provided, and must resort to trust (or prayer) in terms
of either accountability or enforcement. If one does not say
what one intends regarding the disposition of one’s data, one
must rely upon shared assumptions.

II. DESIGNING RAPPD

The remainder of this paper describes RAPPD (Recipient
Accountable Private Personal Data), a light weight prototype
that enables one to communicate data through email, formally
express one’s desires with regard to the disposition of that data,
and hold a trusted recipient accountable, to a limited extent,
for carrying through on these desires.

A. Use Case

The typical use case that we envision for RAPPD is a
patient sending personal medical data via email to an individ-
ually identifiable and trusted medical professional (e.g., their
personal physician), or more generally, an individual sending
data via email to some trusted licensed professional. Other
similar cases are those where we see the email disclaimers
described above, such as a lawyer or physician sending data
to one of his or her clients or patients. The important features
are that (a) both parties are individually identifiable, and (b)
the sender has a reasonable expectation that the recipient is
acting with legitimate intent. Our central assertion is that:
Even in settings where all parties are trustworthy, it is worth
making explicit one’s expectations regarding the disposition
of transmitted private data, and providing technical means
for verifying that these expectations are met (to the extent
possible).

B. Design Goals

RAPPD conforms to a number of design goals:

1. Hybrid Dispositional Specifications (HDS): The origi-
nator’s desires regarding the disposition of the data should be
intelligible both to humans and to computers. The originators
(presumed owners) of the data want to be able to express their
desires with regard to the disposition of their data in a way
that is clear to the recipients. At the same time, we want the
RAPPD system to be able to track the fulfillment of those
desires.

RAPPD borrows from Creative Commons the idea of a
“hybrid” human/machine-readable specification that the orig-
inators can associate with their email communication of the
data in order to specify their intentions with regard to the
disposition of the data. These specifications are “hybrid” in the
sense that they are represented both in an easily understandable
graphical format and in an internal formal format, visible to
the RAPPD system. (Fig. 2)

2. Initial Access Accountability (IAA): Data originators
want RAPPD to track who accesses their data and what these
recipients do with it, at least upon first access by the intended
recipient, and, if possible, subsequent accesses resulting from
the primary recipient having (legitimately) forwarded the data
to secondary recipients, and so on. If there is a leak, the

originator should at least be able to trace it to the last
accountable recipient.

3. Recipient Transparency (RT): The RAPPD process
should operate within the recipient’s normal communications
workflow; in our case this is their email system. The recipients
should not have to register or sign in beyond their typical email
requirements, nor should legitimate secondary recipients have
to do so. If we meet this goal, an honest recipient will have
reduced motivation to bypass the RAPPD process.

4. Legitimate disposition accountability (LDA): Assuming
that IAA and RT are met, recipients should be able and
motivated to use the RAPPD system to take action with respect
to the data. We are typically concerned here with legitimate
forwarding. RAPPD provides a tracked forwarding system that
recipients may use if the originator has authorized forwarding
of the data. Of course, a recipient could always work around
this forwarding mechanism, for example by screenshot or
copy/paste, but if RAPPD meets RT, recipients should have
little reason to do so.

Because RT weighs against recipient registration, and sim-
ilar security processes, RAPPD is severely limited regarding
what can be used to confirm IAA. Our prototype only records
circumstantial data such as the accessor’s IP address and access
time. But given that the transmission is taking place through
email, the usual email registration and security processes will
confirm IAA to a great degree. So unless the recipient’s
email has been hacked, someone who has received the data in
violation will usually have gotten it from a legitimate recipient.
Therefore, if the originator did not give the primary recipient
permission to pass the data on, the originator can at least
contact the primary recipient to try to trace the leak.

C. High Level Specification

To meet these goals the RAPPD prototype has these
components:

• A way for the sender to formally specify his or her
intentions regarding the disposition of the transmitted
private data, and a graphical representation of those
specifications, so that the recipient may be made aware
of the sender’s intentions. (Fig. 2)

• A way of encapsulating the data in an email transims-
sion, and for the recipient to open the capsule and
access the data.

• Callback and auditing mechanisms that enable the
sender to see when the primary recipient has accessed
the data.

• A way that an honest recipient may cleanly (if permit-
ted by the sender) forward the data to others, while
retaining the sender’s privacy intentions and auditing
capabilities.

III. BACKGROUND

A. Control of Data after it is Transmitted

The central question we face is: How can we reap the
benefits of communicating private data, and at the same time
minimize the damage that might result from its leakage?

505050



A sub-problem is: How can one control or at least track
the disposition of private data after is has been transmitted?
Existing answers have focused on prevention and recourse,
with the former category based mostly on technical means,
while the latter is based on a combination of technical means
and legal recourse.

One way to minimize the damage from data leakage
is to not communicate it, or to distort it [2][3][4]. In the
present work we assume that the recipient requires the real
data, as would almost certainly be the case for medical or
financial transactions. Another way to minimize the damage
from data leakage is to limit unauthorized use of the data.
The government, entertainment industry, and more recently,
social media have attempted to implement technical solutions
to this end. The Bell-LaPadula model [5] takes into account
that unauthorized parties could learn the data from authorized
ones, and so implements rules that forbid authorized parties
from writing any data at all where it could be viewed by unau-
thorized parties. Unfortunately, these rules are too restrictive,
and too difficult to enforce.

Enforcement of this sort of constraint is the role of the
Digital Rights Management (DRM) process, which associates
cryptographic keys with licenses [6]. But this requires in-
stalling software or hardware on consumer’s systems [7].
Moreover, DRM fails to take into account legitimate, albeit
unforeseen, uses of data, such as fair use [6], or even more
importantly, for example, making potentially life-saving private
data available to paramedics in an emergency.

B. Accountability

Generally, taking action after detecting an actual violation
is more feasible than frustrating potential ones. Several authors
have noted that enforcement of existing laws in everyday
life occurs only after a violation, and argue that society
could provide cyber-security by the same pattern [6][8][9].
This kind of enforcement assumes that the victim can seek
redress against the violator, which may not always be the
case in transactions performed over the Internet. Nevertheless,
we expect that most sanctioned transactions fall under this
category. In our target use case the recipients, and therefore
initial accessor of data, will often be licensed professionals or
businesses, which are much more easily held accountable than
anonymous individuals.

Accountability policies, more loosely than their access con-
trol counterparts, classify actions as compliance or violations.
For example, [6], [8], [9], and [10] all require a mechanism for
setting such policies. Furthermore, [10] refers to the concept of
“break-glass” scenarios, wherein parties are allowed to make
unauthorized use of data due to an unforeseen emergency,
albeit with some manual steps to avoid accidental violations,
to show that the violations that occurred were deliberate, and
most importantly, to make a traceable record of the intentional
violation.

Such definitions of accountability are found in a number
of legal and technical systems. In the U.S., the Fair Credit
Reporting Act includes policies that require limited usage
of financial data, and their accuracy, and mechanisms for
consumers to know about adverse decisions based on their
data, and to correct any inaccuracies [6]. HIPAA applies

similar standards to health care providers [11][12][13]. For
medical data, [14] proposes a framework that includes not
only patients and health care professionals, but also a health
authority that sets overall access policies that may override
the patients’ choices in case of a conflict. For accountability,
the framework allows violations of these policies, but records
the transactions, and lets patients request justification for these
actions.

However laws do not regulate the transaction of all private
data with equal rigor. In the absence of such general laws,
formation of authoritative bodies that determine general poli-
cies and provide enforcement will be a contentious matter, and
data-recipients can simply refuse to register for such account-
ability services. Therefore, in privacy, as well as copyright and
other areas of data security, there have been efforts to let the
interested parties determine their own privacy policies, with
various levels of legal backing, and to enforce those policies,
or at least audit adherence to them.

On the policy side, the largest effort has been the Plat-
form for Privacy Preferences (P3P) standard, which seeks to
systematize how web sites publish their data usage policies to
their visitors [15]. However, this standard has faced criticism
due to its lack of enforcement – the policies only state how
the website plans to use visitor data, but do not provide a
mechanism for ensuring or determining that the promises are
fulfilled – and its inconsistency with appropriate laws [16], a
problem that is further exacerbated by the fact that the data
collectors or recipients, rather than the originators, choose the
rules.

In other areas of data security the data originator can
use standardized systems to choose policies. For example,
websites that want to reduce interference from web crawlers
that visit their pages can use a file named robots.txt to
tell cooperative web crawlers how they should behave [17].
Creative Commons, mentioned in the introduction, allows
authors of creative works to choose from a set of licenses
to share their work while retaining some of their copyright
rights [18]. Although the goal of Creative Commons is to
promote openness, and the rights of the authors are already
legally enforceable due to copyright laws [18], it provides a
model for simplifying the task of choosing a data usage policy.
However, as with P3P, by themselves neither of these methods
provide technical means of tracking violations.

On the enforcement side, there have been efforts to track
violators in more adversarial situations when prevention fails.
Stoll [19] is one of the earliest, best-known accounts of
tracking unauthorized access to catch an attacker who has
already bypassed the preventative measures. More recently,
[20] has created a system for deploying beacons to track
unauthorized accesses of files by users who have the technical
privileges, but not the right to look at the data. But [19] and
[20] both use fabricated, decoy files, and secretly track the
activities of the intruders, which is not entirely appropriate in
our case, where the recipient has the right to know the real
data.

Nevertheless, tracking unpreventable violations is a useful
technical solution. Some social media applications, such as
Snapchat and the Facebook Poke App, let individuals control
the distribution of their data by allowing senders to limit the

515151



amount of time their messages will be viewable to recipients
[21][22]. To our goal of IAA, some of these applications
allow the originator to learn if the limitation was bypassed,
for example by the recipient taking a screenshot of a message
[21][23]. The RAPPD approach is similar, but seeks to make
tracking more cooperative.

IV. THE RAPPD SYSTEM

RAPPD is a prototype implementation of a lightweight
methodology which, in the trustworthy setting that we con-
sider, can assist parties in appropriate disposition of data. As
described in the design goals above, it enables an individual to
attach various policies to arbitrary kinds of data sent to various
recipients, and to separately track accesses of the data through
primary, and certain kinds of downstream transmissions.

A. Core Components

To support existing data formats and channels between
originators and recipients, RAPPD wraps a privacy-enhancing
layer around data that a given originator wishes to share
privately. This layer states the originator’s desired privacy
policy, and enables the originator, or an authorized auditor, to
track accesses to the data. For this purpose, RAPPD includes
a tracking service that logs accesses, re-transmissions, and
downstream accesses of the wrapped data.

We assume that the originator can transmit data to one
or more recipients by reference to an external data storage
service. This allows him1 to transmit the same data to multiple
recipients, for whom he may wish to specify different policies,
and track separately. This external storage assumption also
covers the common case when the originator does not own,
or due to difficulties such as file size, cannot or does not wish
to store the data over which he wants to assert his rights,
as might be the case for medical data, which may often be
stored in a hospital’s EMR. Not only does the external storage
assumption lessen the burden on the originator, recipient, and
tracking service, but it also lets us use traditional security
mechanisms to hide the data from our tracking mechanisms in
the future. As we specifically assume that the data is remotely
accessible via reference, such as a URL, our prototype provides
such a service, permitting anonymous file uploads. Access to
such a file requires a “unique secret,” which consists of unique
and random components. The unique component acts as an
identifier that lets the storage service locate a requested file,
and the random component acts as an authenticator, preventing
attackers from efficiently guessing the secret required to access
the page.

In the simple case, depicted in Fig. 1, the originator
(presumed owner) plays both the roles of sender and auditor.
The sender has all the credentials associated with the message,
while the auditor only has the audit credentials. This design
permits the sender to also act as the auditor, but also permits
role division wherein the auditor does not have all the sender’s
information regarding the data. In particular a strictly separate
auditor will not have access to the data itself, nor to the identity
of the recipients. The recipient, of course, only has the data
access credentials, not the audit credentials.

1For clarity we shall use male pronouns to refer to the originator, and female
pronouns to refer to the recipient(s).

The key part of the RAPPD system is the tracking service,
depicted in the middle of Fig. 1, which needs to be online
when the sender registers the data, when the recipient wants
to view it, and when the auditor wants to inspect the access log.
Therefore for all practical purposes it needs to be persistently
online. The tracking service contains records of all messages,
which we call transactions, to authorize auditors and recipients
who have provided their respective credentials, as well as the
file accesses, or views. The tracking service needs to be able to
uniquely identify transactions to which it associates the views,
and to provide enough information for the recipient to view
the sender’s data, i.e., the reference of the file in the storage
service. But the tracking service does not need to store the
data itself.

Fig. 1. RAPPD typical workflow

The transaction object is a record of one message from a
particular sender to a particular recipient, and therefore con-
tains the corresponding privacy policies. Thus there is a many-
to-one relationship between the transactions and the posted
files. This distinction between the transaction and data has
the additional feature of keeping an auditor of one transaction
from tracking the use of the same data by other recipients.
To help a human auditor of multiple transactions distinguish
between different recipients, the transaction includes a field for
identifying the primary intended recipient. However, because
the auditor may not be allowed to know who the recipients
are, the field is an opaque identifier, permitting the auditor
to distinguish between different recipients without knowing
their identities. And while the transaction does not include the
contents of the data to which it refers, it does include the
sender-provided subject line, which affords easy organization.

To track accesses, each transaction contains two permis-
sions: viewing and auditing. We keep them mutually exclusive,
since not only does the sender want to prevent the recipient
from becoming her own auditor, but the sender may also want
to prevent the auditor from knowing the actual data. During
the viewing step, the service needs to be able to retrieve the
transaction, so that it can show the recipient the file. During
the auditing step, the server needs to be able to find the
same transaction, to show the associated views. Therefore, the
recipient and auditor each need to know a unique identifier for
the transaction, and although the recipient’s identifier does not
have to equal that of the auditor, there must be a one-to-one
correspondence between them. The simplest such identifier is
the primary key given by an SQL database entry. However,
these are simply consecutive, and therefore highly predictable.
We therefore use a scheme similar to that used by the storage

525252



service, and require the primary key be accompanied by a
randomly-generated secret for viewing the file. The same key,
accompanied by a different secret, is used for inspecting the
transaction’s access log.

The view object is a record of a recipient-side access event
regarding a transaction object’s data. The relationship between
views and transactions is many-to-one, and given a transaction
we can list all of its views. Aside from the primary recipient,
which the auditor can infer from the transaction, the view
itself also contains information about the access, which can
vary between views, and in the case of a violation, possibly
contradict the transaction’s policy. The view model in our
prototype records at least the access time and the IP address
of the viewer.

B. RAPPD Protocol in Detail

Use of the RAPPD system consists of three phases, de-
picted in Fig. 1. The first phase, registration and sending,
occurs once per transaction (Fig. 1, steps 1 and 2). The last
two phases, viewing (Fig. 1, step 3) and audit (Fig. 1, step 4),
can occur as many times as the recipient and auditor desire.

The sender contacts the tracking service during the reg-
istration and sending phase. The sender enters a reference to
the data (generally a URI) on a storage service. Besides this
URI, the client program also asks the sender for metadata.
Like in an email client, our program asks the sender for the
recipient’s email address and the subject. In addition, the user
will submit a vector of privacy restrictions, from categories
such as “usage and transfer restrictions”, and “data retention
time”. The user can set these policies directly, or use a preset,
recommended policy set by specifying the type of message
he is sending, and the type of organization or person that is
receiving it, as exemplified in Fig. 2. In addition, the sender
has the option of entering a note to the recipient that the
recipient can preview before deciding to open the private
data, which will expose her to the tracker. When the sender
registers his message, the client sends the recipient address,
the subject line, and the reference of the file to the tracking
service. The tracking service generates a new transaction,
storing the shortened hash of the recipient email, and exact
copies of the other submitted data. The service also assigns a
unique key to the new transaction, and randomly generates the
viewing and audit credentials. It stores cryptographic hashes
of the credentials, and sends the unique key, and the original
credentials to the sender. When the client receives the data, it
combines the unique key and the audit credential, and displays
this to the sender as the unique secret for auditing the access
log of the transaction. Using the unique key and the viewing
credential, as well as the privacy policies that the sender chose
(but not the message and recipient types, if the sender used
the recommendation system), the client generates the wrapper
page for accessing the file, and displays it as a link which the
sender can save and/or send.

Upon receipt, the recipient’s client automatically contacts
the tracking service. The key component of the message
that the recipient opens is analogous to the result of URL
shortening. URL shortening services allow users to replace
long URLs to desired web pages with shorter ones pointing
to the shortening service [24], which translates these to the

original, longer ones. A side effect, which existing shortening
services already exploit (albeit insecurely), is that they offer a
unified tracking mechanism of accesses to the site [25]. This
tracking approach requires explicit action by the recipient. It
therefore contrasts with those of hidden web bugs (bug as
in eavesdropping rather than programming error) [26], and
beacons in [20]. Besides minimizing the impact on the privacy
of the recipient, we make sure that she is aware of the
originator’s expectations for privacy displayed with the link;
only when the recipient clicks a link to the tracking service
will the server be sent the viewing credentials associated with
the transaction, as well as the IP address of the recipient’s
host. (This step addresses the catch-22 surrounding many
confidentiality notices where the recipient has to read the
message, which she may not, in fact, be permitted to read,
merely in order to read the specification indicating that they are
not allowed to read this message!) Next, the tracker extracts the
unique key and viewing credentials from the request, checks
that a transaction with the unique key exists, and that is has
a matching viewing credential. If the credentials match, the
tracker redirects the recipient to the hidden location of the
data, and generates a view with the IP address of the client
and the time measured at the server, and inserts this into the
log of views of the transaction. After accessing the data, the
recipient could save it and attach it to an email intended for a
secondary recipient. However, for a user who does not intend
to maliciously bypass the system, it is easier to simply forward
the sender’s email, assuming that the sender has specified that
this is a permitted action.

The auditor contacts the tracking service during the audit
phase. The auditor enters the unique ID and the audit key
from the registration phase into a form served by the tracking
service. As with the receiving phase, the tracking service au-
thenticates the client, but checks the audit credential rather than
the viewing credential. If the credentials match, the service
displays the views, showing the access times, the viewer IP
addresses, and a short hash of the intended recipient. Although
both the viewing and auditing credentials easily identify the
same transaction, as they contain the same unique ID, we stress
that the secret components are independent.

C. Implementation Details

We implemented the tracking service using the Django
[27] framework. The RAPPD backend is implemented as a
REST-like web server, while the user interface is simply web
pages and emails with embedded HTML. However JavaScript’s
same-domain policy prevents clients from directly communi-
cating with the server [28]. To bypass this restriction we use
HTTP GET requests, with parameters and credentials in the
URLs. Because access takes place in a browser, the view object
can include browser and operating system data in the HTTP
request header, which may be useful for digital forensics.
However, an attacker with basic network programming skills
can spoof this data rather easily. Not so for access time, which
is determined at the server, or IP address, as the receiver still
needs the server to send back a TCP handshake [29] as well
as the desired data, making the IP address more difficult to
fabricate.

535353



D. Additional Features

In addition to the components that RAPPD requires, our
implementation includes some features to more closely track
different recipients, and which leverage existing infrastructure
to make the user experience more convenient.

1) Promoting Accountability: The transaction object only
contains information about the primary recipient, and the view
object only contains information that the viewer’s browser
automatically sends. However, the IP address in the view object
may not be enough. For example, in the case when various
employees are resharing the data behind a NAT box, it will
appear that the same individual is making multiple accesses.
Furthermore, in case of a breach, the originator may not only
want to hold the actual violator accountable, but also take
actions against whoever gave her the data, which will be
complicated in the case of multiple downstream recipients. At
the same time, when the primary recipient is a sender, she may
have an interest in tracing downstream activity as well.

To take partial account of these problems we provide
for explicit retransmission (Fig. 1, steps 5-7). We increase
the detail in the access log by extending our definition of
transactions to all messages, not only the message between
the primary sender and the primary recipient (called the
primary transaction, v. secondary or downstream transactions).
The primary transactions resemble our original definition of
transactions. Secondary transactions, however, do not store the
link to the data. Instead, they store references to the original,
primary transaction that does have this link, and to the parent
transaction, which the intermediate recipient used to forward
the data. Note that recursively tracing the parents of a series
of such transactions leads to the original one, and reveals
information about the intermediate recipients who created each
downstream transaction. Most of the latter information is avail-
able in the parent transaction. One exception is the IP address
with which the intermediate recipient accessed the parent
transaction to create its child. In this respect, a secondary
transaction resembles a view, except that our extension to the
transaction model lets a secondary transaction have children.
So we both record a retransmission as a special view, stating
that the message was “viewed for retransmission” in the access
log, and store secondary transactions with the intermediate
recipient’s IP address and email to trace the retransmission
of data.

When a secondary recipient wants to access the data,
given the viewing credentials of a secondary transaction, the
tracking service will fetch the original transaction to which
the secondary transaction refers, return its URI, and create
a view that will be visible to the auditor of the secondary
transaction, as well as those of all of the ancestor transactions.
We chose to group views by the immediate transaction through
which the data was accessed, rather than the original, as the
audit log of any intermediate transaction can then, by any
tree-search algorithm, enumerate the transaction’s own views,
and recursively find the views of all of its descendants. The
reference to the immediate transaction also lets the access
log recursively trace the ancestors to display the trace of the
retransmissions between the view and the original.

We also need to modify the client-side interfaces to support
retransmission. Unlike the original sender’s page, a recipient’s
forwarding page only asks for the next recipient’s email
address and an optional note. In addition, as a “break glass”
step, a warning (which the recipient needs to acknowledge and
click through) will block the forwarding page if the privacy
conditions of the message do not allow retransmission. After
the recipient submits his input, the page will contact the
tracking service to register a new transaction, and generate
a copy of itself, with the viewing credentials of this new
transaction. Fortunately, JavaScript lets us copy and store the
entire original document as a string after the browser loads
it. When the intermediate recipient chooses to resend the
message, the script finds the values in the string that we want
to change, and replaces them with the new credentials returned
from the tracking service.

2) Promoting Convenience: Aside from privacy, RAPPD
can make certain communication between the originator and
recipient more convenient. Privacy requirements may com-
plicate communications when the originator wishes to re-
main anonymous from secondary recipients. For example, the
originator submits medical data, and requests that derivative
data anonymize his identity or other personal information.
A research institution that receives the data may want to
contact him for further trials, but would not know how to
reach him. However, the RAPPD audit log can permit the
originator to receive feedback from downstream recipients
without revealing the originator to these downstream agents.
The main differences between a view object and a reply to the
originator are direct control of the replier over the contents of

Fig. 2. RAPPD advanced privacy policy selection UI, example settings, and attendant icons (above). The icons, as well as a machine-readable form of the
policy, are transmitted with the message. The recipient must click the icon image to access the data. This action also activates the auditing callback.

545454



the reply, and the fact that the replier may not have the right
to view the data as the originator sent it. Therefore, we add a
weaker permission to a transaction. A potential replier receives
the credentials (in the usual key-secret form, albeit with a
shorter secret) embedded in a URL. This URL lets the replier
open a form served by the tracking service, and compose and
submit a message. The tracking service then stores the message
as a Reply object, which will be enumerable given the original
transaction, so that the originator can read it when viewing
the audit page. At no point does the downstream agent need
to know the identity of the originator in this transaction.

An additional convenience integrates typical email work-
flow into the RAPPD sender interface, so that it delivers
messages on behalf of the originator without his having to
switch to another program. With the addition of an optional
From address field, originators can send themselves their audit
credentials, and with the recipient’s address, the sender (or
intermediate recipient) can send a recipient the wrapper page of
the data. The latter enhancement is especially straightforward
to use. The basic implementation only displays a link to a data
URL of the webpage. The sender can send it in three ways:
1. He can copy the link location, i.e., the URL, and paste it
into the body of his email to the recipient; 2. He can use the
“Send Link” option to open an email client, and compose a
message containing the URL; or 3. He could save the link
location as an HTML page, and attach it to the email. The
first two methods may be inconvenient for the recipient, who
will see a string that not only does not resemble a usual HTTP
or HTTPS URL, but is also extremely long. Furthermore, all
three approaches assume that the sender is familiar with the
process of right-clicking a link to copy, send or save its URL.

The final convenience feature we added is, as previously
mentioned, our own file storage system which lets the user
transmit or share the contents of a file without already having
to have a URL to previously uploaded data. This service
accepts uploads via HTTP GET requests. The sender can select
a local file, or enter text. The client-side program first uploads
the data to our storage service, and receives the URL, which
the client stores in the same JavaScript variable that would have
stored a manually-entered URL to be sent to the tracker. From
the sender’s point of view, this is simply similar to attaching
a file to an email message.

V. FUTURE WORK

A. Enhancements to RAPPD

We can improve RAPPD with greater integration and
flexibility. If we can let the sender’s program automatically
communicate with all the popular file storage and mail ser-
vices, then we can eliminate our storage and mail services,
and let the sender automatically use the services he normally
uses outside of RAPPD. We can also eliminate the need for
the sender to find the URL and then open the sending form, if
he could simply register and send the data he is viewing on his
browser. And if the browser opens a local file, i.e., the URL
starts with the file:// prefix, the sender’s client program can
upload it automatically. Alternatively, we could let the sender
stay on his current email client, and register his email after he
composes it. This arrangement could also achieve the goal of
integrating the sender’s interface with a mail service. However,

all this integration would require code that is either outside of
the webpage, to avoid the same-origin policies (at least in the
form of a browser add-on), or cooperation from the email and
storage service providers.

To let originators maintain control of their privacy in
more diverse situations we may want RAPPD to support and
track more legitimate ways for recipients to use the data.
In a research setting, for example at an academic hospital,
the recipient, undertaking some research study, may wish to
combine data from several senders before retransmitting it. The
forwarding interface could support the insertion of references,
so that when the combined data is accessed, all senders will
see the access in their audit logs. Moreover, the forwarding
form could use the references to the component transactions
to ensure that the combined data’s privacy terms are at least
as restrictive as its components’ terms. We would also like to
give the sender flexibility over the terms that he chooses. We
could increase the number of terms in two ways: First, we
could review relevant privacy laws, and create both new direct
privacy options and recommendations that can be enforced by
those laws, as is the case of the Creative Commons licenses
[18]. This approach has the benefit of not only supporting
enforceable privacy options, but also educating users about
their privacy rights in different cases. However, this approach
has the disadvantage of limiting the new options we can add,
and creating the need to keep track of the laws in different
jurisdictions. The second approach is to let users choose and
publish their own privacy policies. While this would allows
users to set terms exactly to their own choosing, the likely
proliferation of privacy options creates a new challenge of
keeping their meanings clear, the options relevant, and the
interface simple to use.

B. RAPPD with other Solutions

We could also expand RAPPD with other solutions to
improve both preventive security where it is truly necessary,
as well as accountability.

Currently, the three RAPPD services are storing data that
may make a user wary. The mail relay, or even the sender’s
mail service, have all of the credentials of the transaction.
It can therefore access the data and audit log, although such
accesses will be detected. But the tracking service can access
the data undetected if the storage service is not doing its
own tracking, as it has direct access to the data. In addition
to promoting convenience, if integration between the storage
service and the recipient’s interface lets the recipient’s program
recombine data divided between itself and arbitrary storage
services, then we can use cryptography, storing the key and
ciphertext on the storage service and email, or the other way
around, ensuring that no single service has unaccountable
access to the complete data.

Because RAPPD provides a remote data access tracking
mechanism, it can make use of some of the accountability
methods intended for single file systems and data bases. To
gain the benefits of these sorts of enhancements, the audit log
should have a separate, more visible section that lists recipient
actions deemed more suspicious than the rest. Actions that
contradict the privacy policies could appear in this special
section. As in [14], we would warn the recipient if she is

555555



violating a policy, and require a manual confirmation before
flagging the action. The tracking service itself could also flag
certain activities it deems suspicious, either by a predetermined
set of rules, or by anomaly detection [32].

VI. CONCLUSION

As the saying goes: Doveryai, no proveryai. (Trust, but
verify). Even in settings where all parties are trustworthy,
it is worth making explicit one’s expectations regarding the
disposition of transmitted private data, and it is worth providing
a technical means for verifying that these expectations are
met, to the extent possible. RAPPD is a prototype of such
a technical means, demonstrating how these goals can be
accomplished in browser-based email, a very common locus
of interpersonal data transmission. There is clearly much yet
to be accomplished in this important setting.

ACKNOWLEDGMENT

We thank a number of colleagues, especially Alex Fowler
and John Wilbanks, for their guidance, and several anonymous
reviewers for their feedback on the paper. This work was
supported by CommerceNet.

REFERENCES

[1] Creative Commons Corp., “About creative commons,”
http://creativecommons.org/about/, accessed: 2014-1-22.

[2] I. Dinur and K. Nissim, “Revealing information while preserving
privacy,” in Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 2003, pp. 202–210.

[3] R. Chow and P. Golle, “Faking contextual data for fun, profit, and
privacy,” in Proceedings of the 8th ACM workshop on Privacy in the
electronic society. ACM, 2009, pp. 105–108.

[4] A. Baquero, A. M. Schiffman, and J. Shrager, “Blend me in:
Privacy-preserving input generalization for personalized online
services,” in PST, 2013, pp. 51–60.

[5] D. E. Bell and L. J. L. Padula, “Secure computer system: Unified
exposition and multics interpretation,”
http://csrc.nist.gov/publications/history/bell76.pdf, DTIC Document,
Tech. Rep., 1976.

[6] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum,
J. Hendler, and G. J. Sussman, “Information accountability,”
Communications of the ACM, vol. 51, no. 6, pp. 82–87, 2008.

[7] M. Russinovich, “Sony, rootkits and digital rights management gone
too far,” http:// blogs.technet.com /b/markrussinovich /archive/2005
/10/31/sony-rootkits-and-digital-rights-management-gone-too-far.aspx,
October 2005, accessed: 2013-7-10.

[8] B. Lampson, “Privacy and security usable security: how to get it,”
Communications of the ACM, vol. 52, no. 11, pp. 25–27, 2009.

[9] L. Kagal and H. Abelson, “Access control is an inadequate framework
for privacy protection,” in In W3C Privacy Workshop, 2010.

[10] J. Feigenbaum, J. E. Hendler, A. D. Jaggard, D. J. Weitzner, and R. N.
Wright, “Accountability and deterrence in online life,” in Proceedings
of the 3rd International Conference on Web Science, ACM, 2011.

[11] “Code of federal regulations 164.508(a).”

[12] “Code of federal regulations 164.528(a).”

[13] “Code of federal regulations 164.524(a).”

[14] R. Gajanayake, R. Iannella, and T. R. Sahama, “An information
accountability framework for shared ehealth policies,” 2012.

[15] World Wide Web Consortium, “The platform for privacy preferences
1.1 (p3p1.1) specification,” http://www.w3.org/TR/P3P11/, November
2006, accessed: 2013-8-27.

[16] Electronic Privacy Information Center, “Pretty poor privacy: An
assessment of p3p and internet privacy,”
http://epic.org/reports/prettypoorprivacy.html, June 2000, accessed:
2013-8-27.

[17] “The web robots pages,” http://www.robotstxt.org/robotstxt.html,
accessed: 2013-8-27.

[18] Creative Commons Corp., “About the licenses,”
http://creativecommons.org/licenses/, accessed: 2013-8-27.

[19] C. Stoll, “Stalking the wily hacker,” Communications of the ACM,
vol. 31, no. 5, pp. 484–497, 1988.

[20] S. J. Stolfo, “Methods, systems, and media for measuring computer
security,” June 2011, uS Patent App. 13/166,723.

[21] Snapchat, “Snapchat - real-time picture chatting for ios and android,”
http://www.snapchat.com/#, 2013, accessed: 2013-7-10.

[22] Facebook, “Facebook poke — facebook help center — facebook,”
https://www.facebook.com/help/397568030328686/, 2013, accessed:
2013-7-11.

[23] ——, “Someone took a screenshot of my poke and i don’t want them
to share it. what can i do? — facebook help center — facebook,”
https://www.facebook.com/help/461596740570393, 2013, accessed:
2013-7-11.

[24] Bitly Inc., “What is a shortlink?”
http://support.bitly.com/knowledgebase/
articles/102427-what-is-a-shortlink-, accessed: 2013-8-22.

[25] S. Chapman, “How to spy on campaigns of competitors who use url
shorteners,” http://www.zdnet.com/how-to-spy-on-campaigns-of-
competitors-who-use-url-shorteners-7000001088/, August 2012,
accessed: 2013-8-12.

[26] R. M. Smith, “The web bug faq,”
http://w2.eff.org/Privacy/Marketing/web bug.html, accessed:
2013-7-11.

[27] Django Software Foundation, “Django at a glance,”
https://docs.djangoproject.com/en/1.6/intro/overview/, accessed:
2014-1-28.

[28] Mozilla Corp., “Same-origin policy,” https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Same origin policy for JavaScript, 2011,
accessed: 2013-8-27.

[29] M. Tanase, “Ip spoofing: An introduction,”
http://www.symantec.com/connect/articles/ip-spoofing-introduction,
accessed: 2013-7-22.

[30] M. Duerst, L. Masinter, and J. Zawinski, “The ’mailto’ uri scheme,”
https://tools.ietf.org/html/rfc6068, October 2010, accessed: 2013-7-23.

[31] S. Ostermiller, “Contact form and spam,”
http://ostermiller.org/contactform/spam.html, 2011, accessed:
2013-8-27.

[32] D. E. Denning, “An intrusion-detection model,” Software Engineering,
IEEE Transactions on, no. 2, pp. 222–232, 1987.

565656


