
Reporting Insider Threats via Covert Channels

David N. Muchene, Klevis Luli, and Craig A. Shue

Worcester Polytechnic Institute

{dmuchene.92, klevis}@wpi.edu, cshue@cs.wpi.edu

Abstract—Trusted insiders that betray an organization can
inflict substantial harm. In addition to having privileged access
to organization resources and information, these users may be fa-
miliar with the defenses surrounding valuable assets. Computers
systems at the organization need a mechanism for communicating
suspicious activity that is difficult for a malicious insider (or even
an outsider) to detect or block.

In this work, we propose a covert channel in the Ethernet
frame that allows a computer system to report activity inside
other, unrelated network communication. The covert channel
leverages the differences in the framing approaches used by
Ethernet and IP packets to append hidden information to IP
packet and transmit it to an organization’s administrator. This
stealthy communication is difficult for even advanced attack-
ers and is challenging to block since it opportunistically uses
unrelated communication. Further, since the transmission is
tied to the Ethernet frame, the communication cannot traverse
network routers, preventing security information from leaving
the organization.

We introduce the covert channel, incorporate it into a working
prototype, and combine it with an intrusion detection system to
show its promise for security event reporting.

I. INTRODUCTION

With detailed insight into an organization, trusted insiders

can inflict more harm than even outsiders. In 2009, the United

States Department of Homeland Security indicated that the

insider threat was one of eleven hard computer security prob-

lems [1]. The 2010 exposure of US diplomatic information

via WikiLeaks [2] underscored this risk, creating international

diplomatic tension and showing how a single trusted insider

can undermine an organization’s mission objective.

The insider threat problem has received significant attention,

with work focusing on individual sectors [3], [4] and other out-

lining mitigation strategies for all types of organizations [5].

Insider threat research in the computer security community has

used diverse approaches, ranging from system log and system

call analysis to honey pots [6]. While these mechanisms may

be effective at detecting insider threats, they general ignore

how these threats are reported to security officials.

The most obvious reporting mechanisms are also the easiest

for an attacker to foil. An organization may run a process

on each of their systems that sends an alert to a system

administrator’s computer whenever a threat is detected. This

process may communicate with the administrator’s machine

using a network socket. However, such communication is

easily detected. Network reporting utilities, such as netstat,

are installed by default in most commonly used operating sys-

tems and can be invoked by non-administrator users. Simply

by monitoring the network connections and the number of

bytes transmitted, insiders can detect when security events are

being reported. Further, with firewall tools, a user can simply

block the security reporting channel, preventing alerts from

being transmitted while exfiltrating information.

Organizations need a more robust reporting mechanism that

can covertly transmit information to a security official. Such

reporting must be invisible to non-administrator users and

must be challenging even for administrators to detect. At the

same time, this reporting mechanism must be reasonably high

bandwidth: not only should administrators know if an attack

is occurring, they would ideally be able to obtain a copy of

all the attacker’s network traffic, for example. Finally, the

reporting mechanism must ensure security information does

not leave the organization’s periphery, without requiring any

special configuration on the computer hosts.

In this work, we present a covert channel for communicating

security alerts to organization administrators. Covert channels

allow the stealthy communication of information in computer

networks. Rather than hide the contents of a message, via

mechanisms such as encryption, covert channels attempt to

hide the very existence of the communication. Such covert

channels were first introduced by Lampson [7] in the context

of exfiltration of high security information to a low security

process in a mainframe. Later work expanded covert channels

into computer networking contexts [8]. Importantly, with each

of these covert channels, disclosure of the channel mechanism

renders the approach useless since monitoring can easily

expose usage of the channels once the examiner knows where

to look.

Covert channels have traditionally been used by attackers to

subvert organizational policy. Instead, we propose using covert

channels to enforce security policies. While previous covert

channels sacrificed communication bandwidth for stealthiness,

we aim for a mechanism that is practical for security reporting

while making subversion challenging. In this work, we make

the following three contributions:

• Covert Channel Proposal: We introduce a covert chan-

nel between the end of an IP packet and the closure of

an Ethernet frame that allows arbitrary messages.

• Channel Implementation: Using existing Linux kernel

libraries, we implement senders and receivers of the

covert channels.

• Channel Evaluation: We evaluate the bandwidth and

stealthiness of the channel and use it in reporting events

from an intrusion detection system (IDS).

2013 IEEE Security and Privacy Workshops

© 2013, David N. Muchene. Under license to IEEE.

DOI 10.1109/SPW.2013.30

68

2013 IEEE Security and Privacy Workshops

© 2013, David N. Muchene. Under license to IEEE.

DOI 10.1109/SPW.2013.30

68



II. BACKGROUND AND RELATED WORK

Covert channels have traditionally focused on allowing an

attacker to communicate without detection. These channels can

use the actual data, such as the network packet payload or

file contents, or metadata, such as network packet headers

or file attributes, to communicate information. The former

technique falls largely into research on steganography and is

more challenging to generalize into arbitrary network traffic.

However, the latter approach has been explored extensively by

the network security research community.

Network protocols have a large number of fields and careful

manipulation of these fields can allow the communication of

covert information. The most closely related work to ours, by

Jankowski et al. [9], uses Ethernet, ARP, and TCP to create a

channel. Previous work by Arkin and Anderson [10] found that

some systems leaked information in the padding bytes added

to packets under the 64 byte Ethernet minimum. While the

padding bytes should all be zero, some operating systems did

this incorrectly. In creating PadSteg, Jankowski et al. leveraged

these padding bytes to encode secret information, much like

our proposed approach, but PadSteg also required modification

to upper layer headers, such as ARP and TCP, to indicate the

presence of the covert message. A more significant limitation

of the approach is the limited bandwidth for covert messages.

Many packets exceed the 64 byte Ethernet minimum (a typical

TCP packet uses at least 52 bytes in header alone), and for the

fewer remaining packets, the padding is typically only 10-15

bytes, limiting the size of covert messages. Other approaches

propose using padding for covert channels [11], [12], but each

has similar bandwidth limitations that would hinder practical

security event reporting.

The IP, TCP, UDP, ICMP, and DNS headers provide fod-

der for covert channels as well, given the availability of

reserved fields and fields that can be slightly altered with-

out undermining communication [11], [13]–[17]. Even IPv6,

which still has low levels of adoption, has been explored

for covert channels [18], [19]. Many of the covert channels

are implemented by inserting data in unused header bits of

these protocols [20]. As an example of this type of covert

channel, Rowland [13] created a channel by manipulating the

IP identification field (ID), the TCP Initial Sequence Number

(ISN) field, and the TCP ACK sequence number field. Another

approach, by Jones et al. [17], used the time-to-live (TTL) field

in the IP header to encode covert information. Since the TTL

field is modified by routers during packet transit, the capacity

of the channel will be related to the natural TTL variation

on a path, which can be analyzed to encode a signal while

still looking natural. While clever, each of these channels are

limited in bandwidth.

Covert channels are fundamentally tied to a notion of

“security through obscurity.” If the channel mechanism is

discovered, the usage of such as channel can be easily detected

by a third-party observer. Murdoch and Lewis [21] showed

that modifications to header fields, including TCP timestamps,

could be efficiently identified because benign traffic exhibits

Fig. 1. The proposed approach creates a covert payload after the end of the
IP packet payload, but before the end of the Ethernet frame.

a uniform structure, allowing easy detection of deviations. In

other cases, these channels can be closed through preventative

measures, such as protocol normalizers, without the third-party

even knowing about the details of the channel’s operation or

existence [12], [20].

III. OUR APPROACH

The key idea in our approach is to leverage the differences

in framing techniques used by the Ethernet and IP protocols.

The Ethernet frame uses a header and trailer approach to begin

and end an Ethernet frame while the IP protocol specifies the

packet length as part of its header. Accordingly, we can simply

insert covert payload in bytes that are after the length indicated

in the IP header, causing them to not be part of the IP payload,

but before the Ethernet tailer. In Figure 1, we show where the

covert data would be encoded relative to the rest of the packet.

In our approach, we are not tied to fixed bits in the packet

header or limited bits in padding packets up to the required

length. Instead, we can add covert information to any packet

that is less than the local segments maximum transmission unit

(MTU). The size of the covert information that can be stored in

each packet is the difference of the MTU and the packet’s size.

In some packets, this space may still be relatively small. In

others, such as acknowledgements in the TCP protocol, there

may be a large amount of available capacity in the channel.

The average IP packet size measured at border routers is about

300 bytes in size [22], leaving an average of around 1200 bytes

of covert payload for each packet.

To determine the feasibility of this covert channel for

security threat reporting, we first implement the approach and

describe its feasibility for broader adoption. We then evaluate

the channel’s compatibility with security reporting software.

A. Prototype Implementation

To allow us to determine whether local networks would

properly deliver packets using our covert channel, we imple-

mented a simple proof-of-concept test. We created a client and

server that would communicate with each other using UDP.

Whenever the server would transmit a message, it would do

so using raw sockets. This allowed us to provide the entire

IP portion of the packet, which would be encapsulated in

an Ethernet frame by the underlying network hardware. In

creating these packets, we intentionally set the packet length

field in the IP header to be shorter than the buffer we supplied

to the underlying network call. By monitoring the client end

of the communication with a packet capture tool, such as

Wireshark [23], we could confirm whether the intervening

network would support the covert channel.

6969



Fig. 2. An example network using covert channels. Each arrow represents network communication in one of six steps in the process. Message 1 is a packet
from an unrelated message that is transmitted to the kernel. Message 2 is an interception of Message 1 using divert sockets. Message 3 is an altered version
of Message 1 that includes a covert payload after the IP packet data. Message 4 is the transmission of the prior message from the kernel through the network
interface. If the packet arriving at the router contains a covert payload, the router creates a packet (Message 5) that includes the entire incoming packet and
covert payload, sending it to the organization’s system administrator. Finally, in Message 6, the router strips the Ethernet frame (including the covert message)
and repackages the IP packet and payload for transmission to the destination.

In our first test, we implemented the approach using two

computers running Ubuntu Linux 11.10 with a direct network

link. Monitoring at the client showed that the packet correctly

arrived with its covert payload, allowing the client to harvest

this information. We then repeated the experiment using a

Netgear Ethernet switch between the two hosts. The switch did

not affect the transmission, showing that the approach could be

used in a local switched network. However, as expected, the

covert channel payload was discarded when a device using

network address translation (NAT) was placed between the

hosts. In this case, the destination host could still receive the

original packet, but without the associated covert data.

This implementation allowed us to create a covert channel

simply because the host operating system did not check the

IP packet header’s length before encapsulating the packet.

However, some operating systems do employ such checks. In

particular, the same raw socket server program executing on

a FreeBSD 9.0 machine produced the packet, but without the

covert payload. This indicates that the covert channel may

be natively supported on some operating systems, but others

may require kernel-level modifications to support the covert

channel.

B. Encoding Covert Channels in Unrelated Network Traffic

While our initial prototype demonstrated that covert chan-

nels are feasible in modern network hardware, it uses raw

sockets to create a separate communication flow. To be more

robust, we need an approach that allows the channel to blend in

with normal network traffic from the system. In particular, we

would like to intercept out-bound packets from the machine

and, if the packet is small enough, add the covert data at the

end of the packet.

Fortunately, such mechanisms are readily available in some

operating systems. FreeBSD 9.0 provides kernel support for

a divert socket module that allows an intercepted packet to

be modified and requeued for transmission by the operating

system. Linux also appears to offer support for packet di-

version through the Netlink Protocol Library [24]. For our

experiments, we chose to use the FreeBSD divert sockets due

to their longer support history.

Our packet modification approach involves two stages.

In the first, we redirected network communication using

FreeBSD’s packet filter, ipfw, to our application. We then

checked the packet’s size and appended our message to be

transmitted and returned the packet to the operating system’s

queue. We could see these modification, showing that packet

diversion works correctly, but only after we increased the

length in the IP packet header to bypass FreeBSD’s packet size

validation. Accordingly, we could demonstrate the feasibility

of diversion for the covert channel, but we were unable to do

such out-of-packet covert data without kernel modifications.

C. Security Alert Reporting System

With evidence that we can create the covert channel, along

with the ability to modify unrelated traffic from other appli-

cations, we now consider the broader security implications. In

Figure 2, we provide an overview diagram of the approach.

We depict a threat detection process that uses a kernel API

to obtain queued network traffic from another application,

modifies it to include security alerts as a covert channel,

and returns it to the operating system’s queue. The operating

system then transmits the packet from the queue through the

system’s network card. The packet then traverses the local

network until it reaches a routing device. The router, aware

of the covert channel, can send a copy of the packet to a

system administrator for analysis. The router then proceeds

with normal Internet operation, in which the IP packet is

extracted and reencapsulated in a new datalink layer frame.

This has the effect of discarding the covert payload for packets

leaving the network.

We implemented this system using the Snort IDS [25],

appending messages as covert payload in our prototype ap-

plication. The Snort alerts were relatively small, easily fitting

within the confines of the 1200 byte available in the average

packet. When we induced an ICMP ping flood attack, we were

able to encode the message and extract it at a router process

7070



in the network, which could redirect it to an administrator

system.

One of the key advantages of this approach is that it allows

reporting of events without a separate, dedicated network

connection. A monitoring application running with admin-

istrator privileges can communicate without a normal user

being able to detect or prevent the communication. Even users

with administrator privileges would be unlikely to detect the

covert communication without a packet analyzer and insight

into the channel’s operation. Encryption could additionally be

used to decrease the chance of discovering the covert pay-

load. When combining our approach with covert monitoring

process, such as those enabled through DLL injections and

API hooking [26], organizations can enable insider monitoring

without an identifiable monitoring process or communication

associated with it.

Finally, organizations may be concerned about leaking se-

curity information to off-site systems, including to individuals

colluding with an attacker. Because we encode the covert

channel inside an Ethernet frame, this communication cannot

traverse network gateways. The approach does not require any

custom network configuration on the host to control where the

alerts are sent; only the organization routers need to be aware

of the protocol to redirect traffic. If the host leaves the network,

such as a laptop, the security information will be dropped

by legacy routers without hindering network communication.

These features are intrinsic to the covert channel and lessen

the risk of deploying the approach.

IV. CONCLUSION

In this work, we propose using covert channels for report-

ing security alerts to organization administrators. We further

introduce a covert channel that provides sufficient bandwidth

for the timely transmission of these security alerts, which

was not possible in previous covert channel approaches. We

evaluated the approach using two operating systems, Ubuntu

Linux and FreeBSD, and showed that the channel works in

modern network hardware and operating systems. We further

found that we can modify unrelated network packets to include

security information, complicating detection and prevention

of security alert transmission. Our testing with a popular

intrusion detection system confirmed that the approach would

be compatible with security reporting.

While malicious insiders can be damaging to an organi-

zation, such attackers may be discouraged when they know

the risk of detection and apprehension is higher. By combin-

ing sophisticated insider threat monitoring tools and covert

network communication, an organization can raise the costs

and risks for attackers. Our approach allows organizations to

inform their employees about monitoring and alerting, without

exposing the implementation details that may aid malicious

insiders in their circumvention efforts.

In future work, we plan to integrate the covert channel

creation and packet diversion approaches to create a unified

reporting mechanism. We further will explore additional op-

erating systems, including Microsoft Windows and Mac OS

X, which have a higher user base than the Linux and Unix

systems we investigated.

REFERENCES

[1] US Department of Homeland Security, “A roadmap for cybersecurity
research,” US Department of Homeland Security Whitepaper, November
2009.

[2] Sunshine Press, “Wikileaks,” 2012. [Online]. Available: http://wikileaks.
org/

[3] M. Keeney and the United States Secret Service, Insider threat study:

Computer system sabotage in critical infrastructure sectors. US Secret
Service and CERT Coordination Center, 2005.

[4] A. Cummings, T. Lewellen, D. McIntire, A. Moore, and R. Trzeciak,
“Insider threat study: Illicit cyber activity involving fraud in the US fi-
nancial services sector,” Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Special Report CMU/SEI-2012-
SR-004, 2012.

[5] G. Silowash, D. Cappelli, A. Moore, R. Trzeciak, T. Shimeall, and
L. Flynn, “Common sense guide to mitigating insider threats, 4th
edition,” Software Engineering Institute, Carnegie Mellon University,
Tech. Rep. CMU/SEI-2012-TR-012, 2012.

[6] M. Salem, S. Hershkop, and S. Stolfo, “A survey of insider attack
detection research,” Insider Attack and Cyber Security, pp. 69–90, 2008.

[7] B. Lampson, “A note on the confinement problem,” Communications of

the ACM, vol. 16, no. 10, pp. 613–615, 1973.
[8] G. Simmons, “The prisoner’s problem and the subliminal channel,” in

Advances in Cryptology: Proceedings of Crypto, vol. 83, 1984, pp. 51–
67.

[9] B. Jankowski, W. Mazurczyk, and K. Szczypiorski, “Information hiding
using improper frame padding,” in Telecommunications Network Strat-

egy and Planning Symposium (NETWORKS), 2010 14th International.
IEEE, 2010, pp. 1–6.

[10] O. Arkin and J. Anderson, “Etherleak: Ethernet frame padding in-
formation leakage,” http://leetupload.com/database/Misc/Papers/atstake
etherleak report.pdf, 2003.

[11] T. Handel and M. Sandford, “Hiding data in the OSI network model,”
in Information Hiding. Springer, 1996, pp. 23–38.

[12] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil, “Eliminating steganog-
raphy in internet traffic with active wardens,” in Information Hiding.
Springer, 2003, pp. 18–35.

[13] C. Rowland, “Covert channels in the TCP/IP protocol suite,” First

Monday, vol. 2, no. 5, 1997.
[14] A. Hintz, “Covert channels in TCP and IP headers,” Presentation at

DEFCON, vol. 10, 2002.
[15] K. Ahsan and D. Kundur, “Practical data hiding in TCP/IP,” in Proc.

Workshop on Multimedia Security at ACM Multimedia, vol. 2, no. 7,
2002.

[16] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts, “Covert mes-
saging through TCP timestamps,” in Privacy Enhancing Technologies.
Springer, 2003, pp. 189–193.

[17] E. Jones, O. Le Moigne, and J. Robert, “IP traceback solutions based
on time to live covert channel,” in IEEE International Conference on

Networks, vol. 2. IEEE, 2004, pp. 451–457.
[18] N. Lucena, G. Lewandowski, and S. Chapin, “Covert channels in IPv6,”

in Privacy Enhancing Technologies. Springer, 2006, pp. 147–166.
[19] T. Graf, “Messaging over IPv6 destination options,” The Swiss Unix User

Group, Switzerland, http://gray-world.net/papers/messip6.txt, 2003.
[20] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels

and countermeasures in computer network protocols,” IEEE Communi-

cations Surveys and Tutorials, vol. 9, no. 3, pp. 44–57, 2007.
[21] S. Murdoch and S. Lewis, “Embedding covert channels into TCP/IP,”

in Information Hiding. Springer, 2005, pp. 247–261.
[22] L. Peterson and B. Davie, Computer Networks: A Systems Approach,

5th ed. Elsevier, 2011, p. 278.
[23] The Wireshark Foundation, “Wireshark,” http://www.wireshark.org,

2013.
[24] “Netlink protocol library suite,” http://www.infradead.org/∼tgr/libnl/,

2013.
[25] Sourcefire, Inc., “Snort,” http://www.snort.org/, 2013.
[26] J. Berdajs and Z. Bosnić, “Extending applications using an advanced

approach to dll injection and api hooking,” Software: Practice and

Experience, vol. 40, no. 7, pp. 567–584, 2010.

7171


