
The Probabilistic Provenance Graph

Nwokedi Idika, Mayank Varia, and Harry Phan
MIT Lincoln Laboratory

{nwokedi.idika, mayank.varia, harry.phan}@ll.mit.edu

Abstract

Previous provenance models have assumed that
there is complete certainty in the provenance rela-
tionships. But what if this assumption does not hold?
In this work, we propose a probabilistic provenance
graph (PPG) model to characterize scenarios where
provenance relationships are uncertain. We describe
two motivating examples. The first example demon-
strates the uncertainty associated with the prove-
nance of an email. The second example demonstrates
and characterizes the uncertainty associated with the
provenance of statements in documents.

Keywords

provenance; graphs; trust; linguistics

1. Introduction

Although researchers have noted that the entities
associated with a provenance system may have some
uncertainty [1], previous work on provenance collec-
tion and storage has assumed that the provenance
information itself is certain [2]–[5]. This certainty
about provenance helps reduce the uncertainty asso-
ciated with the data that the provenance describes [6].
However, there are plausible scenarios for which this
assumption does not hold, and, in this work, we present
two such scenarios.

In the first scenario, we model the provenance of an
email in an employee’s inbox. We demonstrate how the
different core W3C PROV relationships are actually
uncertain in this context (we use PROV and PROV-
DM interchangeably as DM stands for “Data Model”).
In the second scenario, we examine in detail how the
provenance associated with the content of documents

may be uncertain, and we show how this uncertainty
may be modeled.

In this work, we introduce the probabilistic prove-
nance graph (PPG) to accommodate scenarios like
the aforementioned, where we are uncertain about the
provenance relationships.

There are two major benefits to our approach.
First, it enables users to reason about the behavior of
systems under inspection more precisely. Provenance
collection mechanisms do not always possess enough
information to have sufficient certainty of events; in
these circumstances, the PPG can help capture those
uncertainties. Second, in a networked environment, one
no longer requires total control or willing participants
in order to reason about the provenance of entities (see
Section 5).

Our contributions include the following:

• Probabilistic extensions to the W3C PROV
provenance model,

• The PPG model,

• A meta-algorithm for identifying relationships
within a “linguistic provenance graph,” which
is a type of PPG, and

In the next section, we cover relevant provenance
models and focus on the most recently proposed prove-
nance model PROV. In Section 3, we motivate the
need for the PPG and the corresponding extensions
to the PROV model. In Section 4, we detail the PPG
model. Then, in Section 5, we discuss what linguistic
provenance is and the prototype system we use to
obtain it. In the final section, we give concluding
remarks.

2. Related Work

The “Open Provenance Model” (OPM) [7] was
the first widely adopted specification for storing and

2013 IEEE Security and Privacy Workshops

© 2013, Nwokedi Idika. Under license to IEEE.

DOI 10.1109/SPW.2013.27

34

2013 IEEE Security and Privacy Workshops

© 2013, Nwokedi Idika. Under license to IEEE.

DOI 10.1109/SPW.2013.27

34

Figure 1. Summary of the “core” node and re-
lationship types in the PROV model; image repli-
cated from [8]

modeling provenance. Building on this effort, the W3C
standard body formed a provenance working group [8]
that established a standard data model for provenance
information called PROV. PROV represents prove-
nance as a directed acyclic graph, or DAG. Vertices
in the PROV model may correspond to entities, ac-
tivities, or agents. The edges connecting these items
are annotated with the possible relationships between
the entity, activity, and/or agent. For a summary of the
core relationships and entities in the PROV model, see
Figure 1. Note that the term “entity” is broad and may
therefore also refer to an agent or activity.

The working group has created an RDF description
for the PROV model, and has described a syntax
for encoding provenance in XML and other formats.
The working group has also developed algorithms
for searching and querying provenance that follow
the PROV model. As a result, PROV appears to be
the most mature and actively developed standard for
representing provenance, so we use it as the base
model for our extensions. Given that PROV leverages
OPM, our extensions could also be applied to the OPM
model, if one preferred that standard. In Section 4 we
describe how the core PROV relationships should be
extended to represent the PPG model.

In [1], Widom proposes the Trio Data Model
(TDM). Within the context of a database, TDM spec-
ifies ways for capturing uncertainty about data and
its related provenance. Although it was created for
databases, TDM is general enough to represent un-

Figure 2. A user’s perspective on a situation
regarding an suspicious email received via prob-
abilistic PROV relationships

certainty in provenance beyond databases. We show
this in Section 4. However, provenance (referred to as
lineage in [1]) is assumed to have a confidence, or
a belief probability, of 1 because no “clear use for
< 1 confidences” could be seen for the application
of interest. In subsequent work on Uncertain-Lineage
Databases (ULDBs) [6] that utilizes TDM, lineage is
assumed to be deterministic and certain.

Our work differs from that of ULDBs. While
ULDBs are concerned with the uncertainty of the data
in the database, we are concerned with the uncertainty
of the provenance of that data.

3. The Provenance of an Email

In this section, we motivate the use of a probabilis-
tic provenance graph (PPG) with an example. The core
node and relationship types for PROV are depicted
in Figure 1. Each core relationship assumes complete
certainty; however, in practice, there can be uncertainty
for each relationship. We demonstrate this fact in the
example that follows.

A user, at his place of work, has noticed that he
is unable to sign into some software applications pro-
vided by his organization. Complicating things further,
he has been unable to get help from his organization’s
help desk department. Shortly thereafter, he received
an email claiming that he has committed a serious

3535

security violation. Moreover, the email mentions that
the FBI provided the Security Services department
with the tip that ultimately led to the identification
of the user’s security violation. The email states that
its claims are substantiated by personal information
about the user and if the user wishes to refute these
allegations, the user must provide additional personal
information.

Having never received such an email before, the
user is uncertain of the legitimacy of this email. The
user’s uncertainty is depicted by the PPG in Figure 2.
Note that the figure is a single representation of un-
certainty. There could be other equally valid alternative
representations. We have chosen this particular repre-
sentation to demonstrate the uncertainty that could be
associated with each of the core PROV relationships.

3.1. The Semantics of the PPG in Context

Now that we have established the situation, we are
now ready to begin interpreting the graph in Figure 2
from the end user’s perspective.

• The end user has incomplete information about
whether the email message received “Was-
DerivedFrom” some boilerplate email that is
typically sent out to end users.

• The end user is unsure whether the email “Was-
GeneratedBy” a human (“Manual Creation”) or
a machine (“Automatic Creation”).

• Because of the style, tone, and requests made
in the email, the end user has uncertainty about
whether the email “WasAttributedTo” his “Se-
curity Services” department, or some “Mali-
cious Attacker” performing some type of social
engineering attack.

• Due to the email’s claim of personal informa-
tion and request for more personal information,
the end user wonders whether or not his “Per-
sonal Information” was “Used” in constructing
the email in question.

• The end user is uncertain about whether his
inability to log into some applications “Was-
InformedBy” information from “Security Ser-
vices.”

• When the help desk refused to help the end user,
he began to wonder whether the “Help Desk”
had “ActedOnBehalfOf” itself or the Security
Services department.

Certain PROV-DM Relations Probabilisitic PROV-DM Relations
WasGeneratedBy WasProbGeneratedBy
Used ProbUsed
WasInformedBy WasProbInformedBy
WasDerivedFrom WasProbDerivedFrom
WasAttributedTo WasProbAttributedTo
WasAssociatedWith WasProbAssociatedWith
ActedOnBehalf ActedProbOnBehalf

Table 1. Core PROV-DM certain and probabilistic
relations

• Because the FBI was mentioned in the email,
the user wonders if the FBI “WasAssociated-
With” the security incident.

3.2. Extensions to the PROV Model

With this small example, we have demonstrated
that there can be uncertainty associated with each of
the seven core PROV relationships that are depicted in
Figure 1. To accommodate uncertainty in provenance
relationships, we augment the PROV model by adding
a probabilistic variant of each core PROV relationship.
These duals are given in Table 1. (The non-core rela-
tionships can be similarly extended.) Each relationship
is given a probability attribute to capture the degree of
confidence in the relationship. How the probabilities
are obtained will vary with the application domain.
Anything from precise equations, to expert knowledge,
to some combination thereof is possible.

4. The Probabilistic Provenance Graph

A probabilistic provenance graph (PPG) is a di-
rected acyclic graph Gt = (V,E) where V corresponds
to the set of vertices and E corresponds to the set of
edges at time t. A node v ∈ V corresponds to state
in the PPG, which may be an artifact, an agent, or an
activity. An edge e ∈ E corresponds to an event in the
PPG. There is a “relationship function” r : E → T that
identifies the type of event that is represented by each
edge; that is, r(e) denotes a probabilistic PROV-DM
relation in Table 1. Only edges with the same parent
and the same type from r may belong to the same
sample space.

Have “time” as part of the model enables the
capturing of possible changes in provenance over time
due to changes in the user’s knowledge. We expect
that, in general, these changes will be enhancements

3636

to the original provenance graph resulting in additions
or removals of nodes/edges. When the provenance
of a process is well understood and its provenance
graph satisfactorily represents the process, t can be
ignored. We will use t only if time is important to the
discussion.

Additionally, we associate a family of (potentially
independent) partial functions {f1, f2, f3, ..., fn} to a
PPG, where 1 ≤ n ≤ |E|. These functions are used to
model the beliefs in the assignments of the relationship
function r. Specifically, each fi : Ei → [0, 1], for
some subset of edges Ei ⊆ E. The function output
fi(e) corresponds to the belief probability that edge
e belongs to r(e). Typically, each function fi will be
applicable to a proper subset of edges in the graph.

For example, in Figure 2, the “WasProbGenerat-
edBy” edges may be associated with a function f1
that is represented by a Logistic Regression Authorship
Identification classifier, with its outputs representing
probabilities. However, this Authorship Identification
classifier representation of f1 would not be useful
for representing, say, function f2 that is associated
with the “ProbUsed” relationship that exists between
the “Automatic Creation” and “Personal Information”
nodes. On the other hand, if f1 was represented as
the frequency of each event (“Manual Creation” vs.
“Automatic Creation”), then it is possible that f1 could
also be used for the “ProbUsed” relationship.

This relationship representation in Figure 2 demon-
strates another aspect of the PPG—implicit edges.
Because “ProbUsed” has no siblings that are also
the same relation explicitly represented in the graph,
under the PPG model, there is an implicit sibling to
“ProbUsed” with the same relation that captures the
complement of the destination node, which in this
case is “Not Personal Information.” Implicit edges exist
for economy of representation. A user can choose to
explicitly represent the implicit edges in the graph. For
relationships that have siblings of the same relation-
ship, any implicit nodes should be listed explicitly to
enhance clarity.

We have previously stated that the partial functions
associated with a PPG may be independent because
some functions may be dependent. For instance, if sev-
eral functions refer to the same sample space, and there
are k > 0 possible events in this sample space, then
there are k−1 degrees of freedom. Thus, one function
may be completely determined by the other functions
that specify the probabilities for the other events in the
sample space. More generally, dependency may exist
because a user finds that one or more functions in the

family can be represented in terms of other functions
in the family.

The PPG model is only well-defined if a probability
assignment is given to every edge in the graph; that
is, ∪iEi = E. Practically, however, this may not be
feasible or desirable. Regarding feasibility, a user
may have insufficient knowledge or data to fully and
accurately represent the PPG of interest. Regarding
desirability, a user may have queries that deal only
with a subgraph of G and therefore would only need
to represent that subgraph. Thus, in practice what will
generally be used is a PPG G′ = (V ′′ ∪ V ′, E′′ ∪E′)
such that V ′ ⊆ V , E′ ⊆ E, V ′′ ∩ V = ∅ and
E′′ ∩E = ∅. The introduction of V ′′ and E′′ suggests
that nodes and edges that are not part of G may be
part of G′ used in practice. Returning to our email
example, if a user was interested in emails that were
attributed to individuals outside of his department,
he might be interested in a graph that differs from
that given in Figure 2. If we take G to be the PPG
in Figure 2, then the user may create a new PPG
G′ by making V ′′ = {“External to Department”}
and V ′ = {“Email in User Inbox”}. Continuing
with the definition of G′, the user would
also define the following edge set: E′′ =
{(“External to Department”, “Email in User Inbox”)}
and E′ = ∅. To complete the definition, the user would
define r for e ∈ E′′ to map to “WasProbAttributedTo.”

Although fi produces belief probabilities, G is not
required to be a bayesian network. The primary benefit
of bayesian networks is that they are well understood
and have standard algorithms for inference. However,
the bayesian graphical depiction may not be what we
want to display to the end user as it could be more
difficult for an end user to visually interpret relative
to the PPG. So one approach would be to utilize a
bayesian representation for performing inference, and
utilize the PPG representation to end users. In the next
section, we discuss how one might obtain a bayesian
network from an alternative PPG representation. Then,
we demonstrate how to represent the PPG under the
well-known Trio Data Model (TDM).

4.1. Formulating the PPG as a Bayesian Net-
work

A PPG is likely to conform to how the user of a
provenance system wants to capture metadata. That is,
a PPG derived from an audit-based process will proba-
bly follow some workflow trace. However, graphically

3737

this causal flow may not be maintained if the user
desires conformance to the PROV model. In bayesian
networks, it is preferable to represent probabilistic
graphs as causal relationships where the causal node
is at the tail of the edge and the effect node is at the
head of the edge [9]. Moreover, there may be nodes in
the original PPG that may not appear in the bayesian
network version of the PPG because they correspond
to outcomes of one or more random variables (vertices)
in the graph. We demonstrate the transformation of an
original PROV-compliant PPG (Figure 2) to a Bayesian
PPG (Figure 3).

The two nodes, “Manual Creation” and “Automatic
Creation,” are merged into the “Machine vs. Human”
node given the two nodes’ existence in the same
sample space and their mutual exclusivity. For the
same reason, the “Security Services” node and the
“Malicious Attacker” nodes are merged into a single
node “Catalyst” in the bayesian network. Any edges
that were associated with the old nodes are now asso-
ciated with the newly created node. In our example, the
following relationships put causes at the tail of an edge
and effects at its head: “ActedProbOnBehalfOf” and
“WasProbInformedBy.” All other relationships reverse
the position of the causal and effect nodes. So for
these relationships, we reverse their edge direction. The
output of this process is Figure 3.

In general, the process for transforming the PROV-
compliant PPG into a bayesian PPG is given by the
following steps:

1) If two or more nodes have the same parent
and relationship, for each such parent, merge
its children creating a new single node x.

2) For each relationship that has the causal node
at the edge head and an effect node at the edge
tail, reverse the edge direction.

Step 1 defines a sample space for x by restricting
the nodes that comprise it to those that have the
same parents and relationships. Step 2 ensures that
the graph has a causal flow direction. By using this
general process, we can leverage the standard inference
methods for bayesian networks and learn more from
the PPG. Note that this bayesian graph is not unique–
there are other legitimate representations.

4.2. Using the Trio Data Model (TDM) to
Represent the PPG

In TDM [1], lineage (i.e., provenance) is given
by the following tuple (tupleID, derivation-type, time,

Figure 3. A bayesian network representation of the
PPG in Figure 2

how-derived, lineage-data). The tupleID is a unique
identifier for the tuple. The derivation type includes the
following: query-based, program-based, update-based,
load-based, and import-based. Each derivation type
may have different values for how-derived and the
lineage-data attributes [1].

We do the following to represent a PPG in TDM:

1) Define a data type for each vertex type in a
PPG: entity, activity, and an agent.

2) For each probabilistic PROV-DM relation, cre-
ate a lineage relation of the same name.

3) Extend the lineage schema with an additional
“confidence” attribute.

A tuple in the lineage relation then corresponds to
an edge in the PPG. The confidence attribute would
correspond to the belief probability associated with the
provenance information represented in the rest of the
tuple. Although [1] notes some distinctions between
approximations and confidence, we do not make such
distinctions. We use confidence, belief probabilities, in
a sufficiently general manner to represent confidence
and approximations.

5. The Provenance of Statements in Doc-
uments: Lincoln Laboratory Plagiarism
for Provenance System (LLPlā)

When assessing the trustworthiness of a document,
an analyst may wish to know source of the statements

3838

Figure 4. Example probabilistic provenance graph

in that document. This is of particular importance
for documents that have no citations. For documents
containing citations, an analyst would like some con-
fidence that the citations are relevant, correct, and
comprehensive.

What the analyst really desires is what we term
the linguistic provenance of the statements in the doc-
ument. Linguistic provenance provides the provenance
for words, phrases and statements in a given document.
Assuming there is a corpus of documents C and a
document of interest d, a linguistic provenance graph
will reveal all relationships between documents that
contain sufficiently similar sections of information.

The linguistic provenance graph is an instance of
a PPG. Under linguistic provenance, nodes map to
document sections of text, whereas edges have the
same representation and semantics as edges in the more
general PPG. Of the core probabilistic PROV relation-
ships, “WasProbDerivedFrom” is the one needed for
linguistic provenance graphs. An example PPG is given
in Figure 4 and is superimposed on the related docu-
ments for context. The rectangles in the documents
correspond to the nodes of the PPG. The position of
the node with respect to the timeline indicates when
the document content was created. The numbers on
the edges correspond to the probabilities of sections
of text being derived from other sections of text. So,
in Figure 4, the node in c9 is derived from the node in
c3 with an 89% probability. We now depict the Lincoln
Laboratory Plagiarism for Provenance System (LLPlā),
which is an approach we have developed to realize
linguistic provenance graphs.

Figure 5. Evaluation architecture

5.1. Prototype Architecture

The prototype architecture depicted in Figure 5
contains four components: the comparator, the docu-
ment corpus, the PPG generator, and the PPG store.
We discuss each component below.

Comparator. The Comparator contains one or
more plagiarism detection algorithms implemented as
python scripts. When a document d comes into the
Comparator, it is compared against the documents in
the “Document Corpus.” As a plagiarism detection al-
gorithm produces plagiarism detections, the detections
are sent to the PPG Generator. When the plagiarism
detection algorithms are done with d, the Comparator
stores the document in the Document Corpus. At the
conclusion of this process, d is part of the corpus.

Document Corpus. The Document Corpus is a store
of all of the documents of interest in the system.
Our prototype stores documents in the file system and
Neo4j.

Probabilistic Provenance Graph Generator. The
PPG Generator receives the detections sent from the
Comparator. The PPG generator can also produce a

3939

PPG as its output. In our prototype, this effect is
achieved by using Ext JS and JSPlumb [10].

Probabilistic Provenance Graph Store. The PPG
Store maintains the PPGs. Because users can modify
a PPG (i.e., create a new PPG with modifications),
thereby creating a new PPG local to that user, users
can have different derivative views of the same global
PPG. Via this mechanism, users are able to modify
probabilities based on their own knowledge or assump-
tions and obtain PPGs that do not affect the PPGs that
everyone else uses. In our prototype, PPGs are stored
in Neo4j [11].

5.2. Similar Text Detection with Pipeline Ap-
proach

A key aspect to the performance of LLPlā is the
plagiarism detection algorithms used. These detections
form that relationships that ultimately connect the
nodes of the linguistic provenance graph. So now, we
focus on a meta-algorithm for detecting more types of
plagiarism cases.

Different plagiarism detection algorithms can ex-
hibit different properties. Some of these properties
may be desirable under different circumstances. For
instance, some plagiarism detection algorithms may
run faster than others. Some plagiarism detection al-
gorithms may exhibit high precision scores but lack in
recall scores for particular types of plagiarism cases.
In fact, this variation can even be observed by a
single algorithm when run with different parameters.
When working with a labeled dataset, “ground truth”
is known, so one can tune parameters for that dataset.
However, when operating on data where ground truth
is unknown, a user may be interested in “casting a
wide net.”

For instance, state-of-the-art plagiarism detection
algorithms have heuristic-based lower bounds on the
type of plagiarism cases they will be able to detect.
Because it is generally impossible to know how long
the plagiarism cases will be in the document, it may
be desirable to search for different sized plagiarism
cases in the documents being compared. This allows
for detection of plagiarism cases that would have been
missed if only one algorithm were used.

We are interested in detecting the various forms
of plagiarism cases that might appear in an unlabeled
corpus. To accomplish this aim, we propose a pipeline

approach where a series of algorithms with different
strengths are sequenced and run against documents of
interest. This approach is depicted in the algorithm
below.

function RUNPIPELINE(algos, d1, d2)
accd ← ∅
for a ∈ algos do

detections ← a.detailed compare(d1, d2)
if |detections| > 0 then

accd ← accd ∪ detections
d1, d2 ←

remove sections(detections, d1, d2)
end if

end for
return accd

end function

The list “algos” contains the algorithms to be ap-
plied to the documents d1 and d2. The variable accd ac-
cumulates the plagiarism detections found between d1
and d2. The method “detailed compare(...)” performs
the detailed comparison of d1 and d2 based on the
implementation provided by algorithm a. The function
“remove sections(...)” removes the sections of text
from both documents that are involved in a plagiarism
detection. This removal ensures that the next algorithm
in the pipeline does not detect sections of text that have
been detected by preceding algorithms.

The sequence of the algorithms in “algos” should
be chosen carefully as the order of the algorithms af-
fects detection performance. There are some heuristics
that should be adhered to if this pipeline approach
is used. First, the most precise algorithms should be
placed toward the front of the pipeline and the least
precise algorithms should be placed toward the back
of the pipeline. Also, algorithms that require more time
to process documents should be placed toward the end
of the pipeline. The detections for these algorithms
can be weighted to decrease the confidence in them
when included in the PPG. Algorithms requiring more
running time are generally more sophisticated algo-
rithms. That is, such algorithms will be able to detect
more complex forms of plagiarisms. In this scenario,
as detections are found, they would need to be sent
to the PPG generator. In this way, the provenance
associated with a document can be updated as new
relationships are discovered. To accomplish this with
the current algorithm, we would simply replace the
accd assignment with a “send(detections)” function
and there would be no need to return a value.

Although the algorithm suggests a sequential ap-

4040

proach, nothing prevents the realization of a parallel
approach. In this scenario, the documents of interest
would be given to at least two different algorithms
at once. To minimize duplication of effort, we would
want to ensure that the algorithms have very little
overlap in the type of plagiarism cases they detected.

6. Conclusions

In this work, we have explained the PPG model
and motivated its use. We have discussed how to
convert a PROV-compliant PPG into a bayesian PPG.
We have proposed extensions to the PROV model to
accommodate uncertainty. We have detailed a meta-
algorithm for utilizing plagiarism detection algorithms
to generate linguistic provenance graphs. While we
use text similarity and document creation date to
determine edge probabilities in linguistic provenance
graphs, these items are just two features that should
feed into a more elaborate classifier. Features like the
author of the documents, the author’s affiliation, the
topic of the document, the style of writing could all
be additional features to produce more accurate edge
probabilities.

Acknowledgments

This work is sponsored by the Assistant Secretary
of Defense for Research & Engineering under Air
Force Contract #FA8721-05-C-0002. Opinions, inter-
pretations, conclusions and recommendations are those
of the author and are not necessarily endorsed by the
United States Government.

The authors would like to thank the follow-
ing people for their assistance in this work: Suresh
Damodaran, Yaron Rachlin, Dan Van Hook, Matthew
Daggett, Douglas Marquis, Jeffrey Gottschalk, Joshua
Haines, Arkady Yerukhimovich, Nabil Schear, Joseph
Cooley (all of MIT LL), Jonathan Kurz (formerly of
MIT LL), representatives of In-Q-Tel, and the review-
ers for their comments.

References

[1] J. Widom, “Trio: a system for integrated management
of data, accuracy, and lineage,” 2005.

[2] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey
of data provenance techniques,” Tech. Rep., 2005.

[3] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun,
and M. Seltzer, “Provenance-aware storage systems,”
in Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, ser. ATEC ’06.
Berkeley, CA, USA: USENIX Association, 2006, pp.
4–4. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1267359.1267363

[4] A. Chapman, B. T. Blaustein, L. Seligman, and M. D.
Allen, “Plus: A provenance manager for integrated
information,” in IRI. IEEE Systems, Man, and
Cybernetics Society, 2011, pp. 269–275.

[5] A. Chapman, M. D. Allen, and B. Blaustein, “It’s
about the data: Provenance as a tool for assessing data
fitness,” in Proceedings of the 4th USENIX Workshop
on the Theory and Practice of Provenance (TAPP’12),
Jun. 2012.

[6] O. Benjelloun, A. D. Sarma, and J. Widom, “Uldbs:
Databases with uncertainty and lineage,” in In VLDB,
2006, pp. 953–964.

[7] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. My-
ers, and P. Paulson, “The open provenance model: An
overview,” in IPAW, ser. Lecture Notes in Computer
Science, vol. 5272. Springer, 2008, pp. 323–326.

[8] W. W. W. Consortium, “Provenance working group,”
http://www.w3.org/2011/prov/wiki/Main Page.

[9] S. J. Russell and P. Norvig, Artificial Intelligence:
A Modern Approach (3rd Edition). Prentice Hall,
December 2009.

[10] jsPlumb, “jsplumb,” http://jsplumb.org/, [Online; Ac-
cessed 11-October-2012].

[11] N. Technology, “Neo4j,” http://neo4j.org/, [Online;
Accessed 11-October-2012].

4141

