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Abstract—Trust based approaches have been widely used to 
counter insider attacks in wireless sensor networks because 
traditional cryptography-based security mechanisms such as 
authentication and authorization are not effective against such 
attacks. A trust model, which is the core component of a trust 
mechanism, provides a quantitative way to evaluate the 
trustworthiness of sensor nodes. The trust evaluation is 
normally conducted by watchdog nodes, which monitor and 
collect other sensors’ behavior information. Most existing 
works mainly focus on the design of the trust models and how 
these models can be used to defend against certain insider 
attacks. However, these studies are empirical with the implicit 
assumption that the trust models are secure and reliable. In 
this paper, we discuss several security vulnerabilities that 
watchdog and trust mechanisms have, examine how inside 
attackers can exploit these security holes, and finally propose 
defending approaches that can mitigate the weaknesses of trust 
mechanism and watchdog.  
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I. INTRODUCTION 

Insider threat is an important security issue in wireless 
sensor network (WSN) because traditional security 
mechanisms, such as authentication and authorization, 
cannot catch inside attackers who are legal members of the 
network. Inside attackers can disrupt the network by 
dropping, modifying, or misrouting data packets. This is a 
serious threat for many applications such as military 
surveillance system that monitors the battlefield and other 
critical infrastructures. 

Trust mechanism with the notion of trust in human 
society has been developed to defend against insider attacks 
[11, 12, 15, 24]. Since WSNs consist of hundreds or 
thousands of tiny sensor nodes, the trust mechanism is often 
implemented as a distributed system where each sensor can 
evaluate, update, and store the trustworthiness of other 
nodes based on the trust model.  

In general, trust mechanism works in the following three 
stages 1) node behavior monitoring, 2) trust measurement, 
and 3) insider attack detection. Watchdog [8] is a popular 
monitoring mechanism for the first stage. The other two 
stages are processed by a trust model such as beta trust 
model [4] and entropy trust model [10] using the data 
collected by the watchdogs. In such trust mechanism, if an 
inside attacker A keeps dropping packets from its neighbor 

N, watchdog in N will monitor and record this misbehavior 
by node A (stage 1). Then, node N will lower A’s trust value 
(stage 2) and when the trust value goes below a trust 
threshold, N will consider node A untrusted and remove it 
from its neighbor list (stage 3).  

However, there are several weaknesses in this seemingly 
sound mechanism. First, watchdog has some security 
vulnerabilities due to inherent weaknesses of WSNs such as 
distributed sensors, limited transceiver range, and multi-hop 
routing [5, 8]. Second, no trust model can completely prevent 
inside attackers from dropping packets. This is because for a 
particular packet drop, we cannot distinguish whether it is 
dropped by an attacker or a result from contention or noise. 
Thus, an inside attacker can disguise its malicious behavior 
behind network traffic or noise. Third, we cannot ignore the 
fact that insiders have internal knowledge about our network 
and security mechanisms against attacks. By exploiting such 
knowledge, inside attackers can launch their attacks 
intelligently to avoid being detected. 

We observe that many existing trust models adopting 
watchdog as their monitoring mechanism do not explicitly 
address these weaknesses. Our goal in this paper is to 
demonstrate how serious insider attacks can be in WSNs 
even with the presence of trust mechanism and watchdog, 
and to introduce defending approaches to improve the trust 
mechanism.  

  

II. BACKGROUNDS  

A. Packet forwarding in WSN with trust mechanism  

To understand the behaviors of inside attackers, we first 
explain how a sensor node forwards packets to another node 
in a WSN with trust mechanism. We assume that CSMA/CA 
(Carrier Sense Multiple Access with Collision Avoidance) is 
used for wireless channel access in WSNs [1]. 

We consider the scenario that a source node S reports its 
collected information (packets) to the base station (BS). The 
routing path from S to BS is constructed following some 
routing algorithm that allows multi-hop communication for 
energy efficiency. For each intermediate node A in the 
routing path, let NS be its Neighbor Set consisting of all its 
neighbor nodes and FS (Forwarding Set) be the set of 
candidate nodes that the packet may be forwarded to. 
Apparently, FS is a subset of NS.  

To forward packets to BS, node S first chooses a node T 
from its FS as the next hop and sends the packet to T. Then 
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S starts monitoring T’s behaviors. In the case when T 
receives the packet, it will send an acknowledgement 
message (ACK) back to S, and then forward the packet to 
the next node in its FS toward the BS. When the watchdog 
of S can overhear T’s forwarding, S considers T forwarded 
its packet toward the BS and increases T’s trust value. If S 
does not get the ACK message from T, S retransmits the 
packet up to a pre-determined number of times, three for 
example. If S does not get the ACK message even after the 
maximum retransmissions, S discards the packet and 
decreases T’s trust value based on the trust mechanism we 
will elaborate later. If S gets the ACK message but does not 
overhear T’s forwarding, S will reduce T’s trust value.  

 

B. Insider attacks in WSNs  

To secure our network, we assume our WSN is equipped 
with cryptography-based authentication and authorization to 
defend against outside attackers launching eavesdropping or 
packet modification [5]. In this WSN, outside attacks may be 
limited to directly damaging sensors by physical strike or 
jamming. Meanwhile, inside attackers have some advantages 
compared with outside attackers. First, inside attackers 
damage our network stealthily since they can avoid our 
authentication and authorization and it is not easy to expect 
their attack patterns. Second, inside attackers can not only 
damage sensors but also disrupt our network by dropping 
critical packets or modifying packet information maliciously.  

Inside attackers can launch various types of attacks in 
active (modification, packet drop, or misrouting) or passive 
(eavesdropping) way. While modification, misrouting, and 
eavesdropping can be prevented to some extent by the 
authentication and authorization, it is tricky to counter packet 
drop attacks because for a particular packet drop, we cannot 
distinguish whether it is dropped by an attacker or a result 
from collision or noise. In addition, inside packet drop 
attackers who are well positioned in the network (e.g., near 
BS) can significantly degrade network performance such as 
packet delivery rate due to their repeated packet drops. 

There are several types of packet drop attacks such as 
balckhole attack, grayhole attack, and on-off attack [10, 15] 
as described in TABLE I. Compared to blackhole attack, it is 
harder to detect grayhole attack and on-off attack due to their 
complicated attack patterns. Moreover, packet drop attacks 
have evolved to intelligently drop packets by exploiting 
inside knowledge about our network and security mechanism 
to avoid being detected [15]. For this reason, in this paper, 
we mainly focus on inside attackers’ packet drop attacks.  

TABLE I.  INSIDER PACKET DROP ATTACKS AND DESCRIPTION 

Attack Description 
No attack Forward all packets 

Blackhole attack Drop all packets 

Grayhole attack Drop (specific) packets randomly 

On-off attack Drop all or some portion of packets periodically 

C. Watchdog 

Marti et al [8] introduced a monitoring mechanism 
known as watchdog to identify misbehaving nodes in 

wireless ad hoc networks. In their approach, each sensor 
node has its own watchdog that monitors and records its one 
hop neighbors’ behaviors such as packet transmission. When 
a sending node S sends a packet to its neighbor node T, the 
watchdog in S verifies whether T forwards the packet toward 
the BS or not by using the sensor’s overhearing ability within 
its transceiver range.  

In this mechanism, S stores all recently sent packets in its 
buffer, and compares each packet with the overheard packet 
to see whether there is a match. If yes, it means that the 
packet is forwarded by T and S will remove the packet from 
the buffer. If a packet remains in the buffer for a period longer 
than a pre-determined time, the watchdog considers that T 
fails to forward the packet and will increase its failure tally for 
T. If a neighbor’s failure tally exceeds a certain threshold, it 
will be considered as a misbehaving node by S.  

Watchdog works similarly with trust mechanism in that 
trust model evaluates each sensor’s trustworthiness based on 
the past behaviors in much sophisticated ways. In this paper, 
to avoid any confusion, we consider that watchdog is a 
component in the trust mechanism and it is responsible for 
node behavior monitoring. 

 

D. Trust mechanism 

In general, trust mechanism works in the following stages.  
1) Node behavior monitoring: Each sensor node 

monitors and records its neighbors’ behaviors such as packet 
forwarding. This collected data will be used for 
trustworthiness evaluation in the next stage. Watchdog is a 
monitoring mechanism popularly used in this stage. The 
confidence of the trustworthiness evaluation depends on how 
much data a sensor collects and how reliable such data is.  

2) Trust measurement: Trust model defines how to 
measure the trustworthiness of a sensor node. Yu et al [15] 
introduced several representative approaches to build the 
trust model, which include Bayesian approach, Entropy 
approach, Game-theoretic approach, and Fuzzy approach. 
The trust value of a node may be different when we use 
different trust models. For example, when a node is observed 
to forward the packet s times and drops the packet f times, 
the beta trust model [4] will assign trust value T (0  T  1) 
to this node using the following formula  
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Meanwhile, entropy trust model [10] uses entropy function 
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3) Inside attack detection: Based on the trust value, a 
sensor node determines whether its neighbor is trustworthy 
for collaboration (such as packet forwarding). If a 
neighbor’s trust value is less than a certain threshold T, it 
will be considered as an untrusted or malicious node. 
Depending on the WSN’s trust mechanism, the detection of 
such insider attacker may or may not be broadcast to the rest 
of the nodes in the WSN.   

III. VULNERABILITIES OF TRUST MECHANISM 

A. Limitations of watchdog 

In [8], Marti et al pointed out that watchdog has the 
limitation of not being able to detect a misbehaving node in 
the presence of the following cases. We examine each case 
using the path S A B C BS in Fig. 1 as an example. 

 1) Ambiguous collision: Consider the situation that A 
forwards a packet to B, and then starts to overhear whether B 
will forward the packet to C. However, when B forwards to 
C, A may not overhear this transmission if other neighbors 
(such as S) send packets to A at the same time. This 
ambiguous collision may mislead A to conclude that B is 
malicious, which may not be correct.   

2) Receiver collision: Similar to the above case, collision 
may also occur at the receiver side C resulting C does not 
receive the packet correctly. A can only overhear that B has 
forwarded the packet, but A cannot tell whether C has 
received. When this happens, (malicious) node B can 
intentionally skip retransmissions or (malicious) node C can 
generate collision on purpose to avoid receiving the packet 
and to force B into retransmitting.  

3) Limited transmission power: If B adjusts its 
transmission power such that A can overhear but C cannot 
receive, B can drop packets and increase its trustworthiness (to 
node A). In geographic routings where every node knows the 
positions of itself and its neighbors, B can easily launch this 
attack by selecting a node C from its FS such that dist (B, C) > 
dist (B, A) where dist (i, j) is a distance between node i  and  j. 

4) False misbehavior: This case happens when a 
malicious node intentionally reports that other nodes are 
misbehaving. For example, A may report B is dropping 
packets although B is not. Then, A’s neighbor such as node S, 
who cannot directly communicate (and thus monitor) B, will 
consider B malicious.  

5) Collusion: Multiple colluding attackers can launch 
more sophisticated attacks. For example, two malicious 
colluding node A and B can completely deceive S if A 
forwards all packets from S to B, but B drops all the packets. 
Because S cannot overhear B’s misbehaviors, S will not 
consider A and B malicious.  

6) Partial dropping: Instead of dropping all packets, B 
can drop only some packets such that the failure tally will 
not exceed the detection threshold of A’s watchdog. This is 
similar with grayhole attack.  

 

B. Vulnerabilities in trust mechanism 

We now examine the security weaknesses in each of the 
aforementioned three stages of a trust mechanism.  
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Figure 1. A routing path having three intermediate nodes A, B, and C 

1) Vulnerabilities in the node behavior monitoring stage  
In this stage, data will be collected for the evaluation of 

trust value in the later stages. Collecting reliable and trusted 
data will be vital. If this stage is contaminated by inside 
attackers, the entire trust mechanism will fail. As we focus 
on trust mechanisms that rely on watchdog for data 
collection, this stage will have the same vulnerabilities as 
those for watchdog in the previous section, particularly the 
first three: ambiguous collision, receiver collision, and 
limited transmission power. The other weaknesses of 
watchdog are closely related to the next two stages.  

2) Vulnerabilities in the trust measurement stage 
The key threat in this stage is that an inside attacker may 

figure out the trust mechanism and the associated parameters 
such as the trust (or trustworthiness) threshold T being used. 
Due to the simplicity of the data collected in the previous 
stage and the limited available trust model (normally with 
low computation complexity), it will not be hard to reverse 
engineer to do this. To make it even worse, it is not 
necessary for the inside attacker to know the exact 
information of the trust model to launch insider attacks 
without being detected. For example, dropping packets as 
long as the insider attacker estimates its trust value will be 
above the estimated trust threshold. We will elaborate more 
about this next. 

3) Vulnerabilities in the inside attacker detection stage 
In this stage, a node is classified as either trustful or 

distrustful. The value of the trust threshold ( T) that is used 
for such classification is the single most important parameter 
at this stage. A low T  will misclassify attackers as trustful 
nodes and a high T will cause unnecessary false alarm. T 
must be carefully determined to maximize attacker detection 
rate and minimize false alarm rate.  

However, if an attacker gets a reasonably good 
estimation on the value of T, insider attacks can be 
launched without being detected. As shown below in Table 
II, if the attacker assumes T = 0.7, after certain number of 
initial successful forwarding (to build a high trust value), the 
attacker can drop a considerable number of packets 
consecutively without bringing its trustworthiness to 0.7 or 
below. For example, with s = 1000 previous successful 
forwarding, the next 428 packets can be dropped without 
being detected by the beta trust model, and 170 packets can 
be dropped if the entropy model is used. 

TABLE II.  BLACKHOLE ATTACKER’S MAXIMUM PACKET DROPS 
(PACKET DROP RATE) WITHOUT BEING DETECTED BY TRUST MODELS 

Trust 
model 

Number of previous successful forwarding (s) 

10 100 200 300 500 1000 

Beta 3  
(30%) 

42 
 (42%) 

85 
(42.5%) 

128 
(42.6%) 

213 
(42.6%) 

428 
(42.8%) 

Entropy 0 
(0%) 

16 
(16%) 

33 
(16.5%) 

50 
(16.6%) 

84 
(16.8%) 

170 
(17%) 
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Figure 2. Single attacker Figure 3. Two colluding attackers Figure 4. Three colluding attackers Figure 5. Reputation evaluation 

IV. INSIDER THREAT ANALYSIS 

In this section, we examine how inside attackers can defeat 
the trust mechanism combined with watchdog by exploiting the 
weaknesses that we have explained in section III. We first set 
up the goal of inside attackers, show various ways to break the 
network, and measure quantitatively the damage by attackers. 

The goal of inside attackers is to maximize the damage 
on the network by preventing the collected data from 
reaching the BS. At the same time, they want to hide 
themselves so as not to be detected by the trust mechanism. 
As we have mentioned earlier, we focus our discussion on 
packet drop attacks. To measure the amount of damage 
caused by inside attackers, we use maximum packet drop 
rate (MPDR) defined below as the metric  

 

100)/((%) ×= RD NNMPDR
 

(3) 

where ND is the total number of dropped packets and NR is 
the total number of received packets.   

We now analyze three cases of inside threats: single 
inside attacker, multiple colluding inside attackers, and 
inside attacker that does more than dropping packets. 

 

A. Single inside attacker (M) 

Consider the malicious node M sits between the source 
node S and a normal node N as shown in Fig. 2. For routing 
protocols that use greedy forwarding approach such as the 
popular GPSR (Greedy Perimeter Stateless Routing) [23], 
node S chooses only its next hop M. S does not know to 
which node M will forward the packet and may not 
communicate directly with that node due to limited 
transceiver coverage.  

If M receives a packet from S, sends ACK back to S, 
and forwards the packet to N, we consider that M behaves 
normally.  After S sends a packet to M, there are four ways 
when the packet is dropped maliciously at node M: (d1) M 
does not receive the packet; (d2) M receives the packet but 
does not send ACK back to S; (d3) M receives the packet, 
sends ACK back to S, but drops the packet; (d4) M receives 
the packet, sends ACK back to S, and forwards the packet to 
N maliciously such that N cannot receive the packet. 

The first three cases (d1–d3) will be caught by the 
watchdog at node S because the watchdog will not observe 
either M’s ACK or M’s forwarding behavior. When M uses 
these attacks, it will be caught and S will reduce M’s trust 
value. However, M can still use these when its current trust 
value is high and a single drop will not lower its trust value 
to be below the trust threshold T. In this case, MPDR 
depends on trust model and T. We have seen this in Table 
II where the MPDR values are shown inside the ()’s.   

 
In case (d4), M may be able to simultaneously avoid 

being detected by the watchdog and increase its trust value 
at node S. There are several ways to implement this. For 
example, M may exploit the weaknesses of watchdog we 
have discussed in section III (for instance, adjusts the 
transmission power such that S can overhear but N cannot 
receive the forwarded packet). M can also forward the 
packet to a non-existing node (or a dead node that has run 
out of battery) and let S overhear the forwarding. In this 
case, MPDR can reach 100%, which means that M can drop 
all the packets while it maintains high trust value from S.   

B. Multiple colluding inside attackers (M1, M2, M3, …) 

Multiple colluding inside attackers can achieve their goal 
much easier than a single inside attacker can. Consider two 
colluding attackers M1 and M2 who are neighbors in a 
routing path as shown in Fig. 3. M1 will ACK on the 
reception of packets from S and forward them to M2. This 
will convince the watchdog in S to increase M1’s trust value. 
However, when the watchdog in S cannot overhear M2, M2 
can use any of packet drop methods (d1–d4) and drop all the 
packets received from M1 without being detected by S.  

However, this sequential placement of attackers may not 
generate the largest MPDR. In fact, the actual damage on S 
depends on the total number of packets that the first attacker 
M1 receives from S. The actual MPDR will become much 
lower if S distributes its packets to several neighbors to 
balance workloads for energy-efficiency or to avoid hidden 
attackers for security. For example, if we assume that S has 
four neighbors including one attacker M1 in FS and evenly 
distributes its packets to the four neighbors, M will get 25% 
of packets from S and the actual MPDR will be 25%.   

For this reason, attackers will try to receive as many 
packets as possible from S in order to maximize the damage 
on S. In general, routing algorithm has one or more decision 
metrics that determine the next hop. For example, if trust is 
the most important decision metric, a node with the highest 
trust value in FS will receive all or the largest number of 
packets from S depending on the next hop selection 
algorithm. If inside attackers have this knowledge, the first 
attacker M1 will try to maintain a high trust value by 
faithfully collaborating with S and the second attacker M2 
will drop S’s all packets forwarded by M1. Another way to 
increase the damage on S is to additionally deploy inside 
attackers near S. Fig. 4 shows three colluding attackers M1, 
M2, and M3. M1 and M2 are positioned within S’s one hop 
distance, and M3 is two hops away from S. If S has four 
neighbors including M1 and M2 in FS, M1 and M2 will 
receive at least 50% of packets from S, and M3 will drop all 
packets received from M1 and M2. Thus, the actual damage 
on S grows to more than 50%. 
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Meanwhile, trust mechanism in WSNs has evolved to 
overcome a single sensor’s weakness (limited information 
about its neighbors) by using indirect information provided 
by neighbor nodes [7, 10, 15, 24]. That is, a node can get 
reputation value about its neighbor by considering both 
direct trust value by itself and indirect trust values (or 
indirect observations) by its neighbors. In Fig. 5, S has two 
good neighbors A and B who are also communicating with 
malicious node M. Then, each S, A, and B will have direct 
trust value about M as TS,M, TA,M, and TB,M, respectively. By 
combining the three trust values as RS,M= f (TS,M, TA,M, TB,M) 
where f ( ) is a reputation evaluation function, S can obtain 
reputation value RS,M about M. We show how S can utilize 
this information to see if M is malicious through a simple 
example. Consider the following situation in Fig. 5. M is 
smartly dropping packets received from its neighbors S, A, 
and B. To maximize the damage on them, M maintains it 
trust values at S, A, and B as slightly higher than T. In this 
case, if S uses only its own trust value, M will not be 
detected. On the other hand, consider that S evaluates M’s 
reputation by using a simple reputation evaluation function 
as RS,M = TS,M + TA,M + TB,M – penalty (TS,M, TA,M, TB,M,) 
where 0  , ,   1,  +  +  =1, and penalty ( ) is a user-
defined function that grows as all inputs (trust values) are 
close to T. In this approach, RS,M will be lowered below T. 
Unfortunately, inside attackers also have evolved intelligently 
to avoid trust mechanism. 

 

C. Intelligent inside attacks against trust mechanism 

In this part, we introduce several sophisticated attacks 
exploiting the mathematical or logical vulnerabilities of trust 
mechanism. There are three types of attacks that directly 
disrupt trust mechanism such as bad mouthing attack, 
conflict behavior attack, and intelligent behavior attack [3, 7, 
10, 15]. We introduce how each attack works in brief. 

In bad mouthing attack, attackers spread negative 
information (trust or reputation value) about good nodes. Let 
us assume that A and B are malicious but M is good in Fig. 5. 
If A and B provide S with dishonest bad indirect trust values 
about M, S may falsely distrust M and discard M. Similarly, 
A and B may provide S with dishonest good indirect trust 
values about themselves to increase their trust values at S.  

In conflicting behavior attack, attackers impair good 
nodes’ indirect trust (or recommendation) by behaving 
differently to different nodes. Let us assume that an inside 
attacker M behaves nicely to A and behaves badly to B in 
Fig. 5. A and B will have different observations about M. 
When they exchange indirect trust values about M, A may 
not trust B’s indirect trust value about M, and vice versa. As 
a result, it causes conflict opinions between two good nodes.  

In intelligent behavior attack, attackers selectively adjust 
their behaviors based on intercepted or reverse engineered 
critical data that affect reputation evaluation, such as trust 
value or trust threshold. If attackers obtain the data, they can 
safely launch attacks without being detected by adaptively 
behaving nicely or badly. By definition, this attack includes 
most misbehaving attacks that exploit inside knowledge 
about the network and trust mechanism.  

V. DEFENDING APPROACHES 

Throughout previous sections, we have shown that even   
single security vulnerability in trust mechanism can be 
exploited by inside attackers, thus resulting in a huge damage 
on our network. Therefore, we must eliminate the identified 
vulnerabilities and have countermeasures that defend against 
inside attackers exploiting the security holes. In TABLE III, 
we list the working stages of a general trust mechanism at the 
first column and related security vulnerabilities and attacks at 
the second column. In this section, we present how we can 
mitigate the security vulnerabilities in each step and some 
existing works with their advantages and limitations (at the 
third column). We also introduce some research ideas.  

A. Improving stage 1:  behavior monitoring 

1) Neighbor-based monitoring  
A sender S cannot completely monitor misbehaviors of a 

receiver or multiple colluding attackers due to its limited 
overhearing distance. One way of improving this limitation 
is to virtually extend S’s monitoring coverage by helps from 
other neighbors who can also monitor all forwarding 
participants’ behaviors in a routing path. This approach can 
mitigate several types of colluding attacks that we have 
shown in previous sections. In the example of two colluding 
attackers M1 and M2 positioned in a routing path 
S M1 M2 BS, we explained M2 can drop all packets 
without being detected by S due to the S’s limited 
overhearing distance. On the contrary, in this approach, M2’s 
misbehaviors can be detected by common good neighbors 
(called guard nodes in [21]) of M1 and M2. Moreover, the 
guard nodes will easily detect M1’s misbehaviors, since they 
observe that M1 violates trust mechanism because M1 keeps 
forwarding packets to M2 although M2 keeps dropping all 
packets received from M1. For another example, guard 
nodes can detect whether an attacker sent a packet to a non-
existing node by trying to contact the non-existing node. In 
addition, power-adjusting attack can be detected by guard 
nodes examining whether or not the strength of transmission 
power is enough to reach to the receiving node.       

Several works [2, 14, 21] that used neighbor-based 
approach have been introduced in order to mitigate selective 
forwarding attacks. In [14], when an inside attacker drops a 
packet, a monitoring neighbor (called monitor node) alarms it 
to S and BS and also sends a copied packet to BS along a new 
routing path that is disjoint with the original routing path.  

However, there are some limitations in these approaches. 
First, they do not address how their approaches can counter 
M2’s selective packet drops against S. If M2 stores enough 
packets received from multiple nodes in its forwarding 
buffer, M2 can safely pinpoint S’s packets by using a simple 
scheduling method so as not to trigger neighbor nodes’ alert 
mechanism. To defend against M2’s selective forwarding 
attack, neighbor nodes must be able to figure out which 
source node is under selective forwarding attack. In addition, 
a serious problem happens when neighbor nodes falsely 
accuse good nodes of attackers. In this case, we must have a 
countermeasure that not only detects selective forwarding 
attackers but also locates the misbehaving guard nodes.   
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TABLE III.   SECURITY VULNERABILITIES IN TRUST MECHANISM AND DEFENDING APPROACHES 

Working stages Security vulnerabilities/Attacks Defending approaches 

Direct 

  1. Behavior monitoring based on  
      watchdog 

 Limited overhearing/ Intentional collision,   
 false behavior, collusion, partial dropping  

 Neighbor-based monitoring, acknowledgement-based  
 monitoring, indirect observation 

2. Direct trust evaluation  
    (or direct trust measurement) 

 Limited information/ Reverse engineering 
 Anomaly detection (e.g., consecutive failures), hiding trust  
 evaluation mechanism (e.g., software/data obfuscation) 

  3. Detection based on direct trust  
 Incomplete trust threshold, miss detection   
 and false alarm/ Reverse engineering 

 Optimized trust threshold, dynamic trust threshold,  
 avoidance (e.g., multipath routing), redundancy 

Indirect 
(extended) 

4. Collecting indirect information   
   (recommendation) from neighbors 

 Unreliable information/ False behavior, bad   
 mouthing, conflict behavior attack 

 Anomaly detection (eliminating erroneous measurement),   
 redundancy (k fault tolerance) 

5. Reputation evaluation based on    
    both direct and indirect information 

 Unreliable information/ Reverse engineering 
 Anomaly detection, hiding trust evaluation mechanism  
 (e.g., software/data obfuscation) 

  6. Detection based on reputation  
 Incomplete trust threshold, miss detection 
 and false alarm/ Reverse engineering 

 Optimized trust threshold, dynamic trust threshold,  
 avoidance (e.g., multipath routing), redundancy 

   

2) Acknowledgement-based monitoring 
Xio et al [13] proposed a multi-hop acknowledgement 

scheme to detect selective forwarding attacks. In this 
approach, some randomly chosen nodes (called checkpoints) 
in a routing path report ACKs back to source node S (hop by 
hop) by using the same but reversed routing path when they 
receive a packet. If a previous checkpoint does not receive 
ACK from a next checkpoint, it reports an alert ACK to S or 
BS hop by hop along the same path. Then, S figures out 
which nodes are malicious or suspicious based on collected 
ACKs from checkpoints, and then discards them. However, 
this approach has some weaknesses. First, while an ACK 
traverses back to S, insider attackers in the routing path can 
drop it as they dropped packets. Second, it is unclear how to 
accurately locate inside attackers. Third, it fails to handle 
when this checkpoints nodes falsely prosecute good nodes.   

B. Improving stage 2: direct trust evaluation 

1) Anomaly detection 
To the best of our knowledge, there is no existing work 

focusing on defending against intelligent behavior attack. To 
counter this attack, first, we must prevent inside attackers 
from obtaining critical information such as trust value and 
trust evaluation procedure. However, this may not be 
completely achieved because insider attackers may be able to 
steal that information through reverse engineering; we will 
further explain about this later. Second, we must detect 
inside attackers by accurately measuring trust values of 
nodes and then classifying nodes into two groups (bad and 
good) based on the trust threshold. There must be certain 
unique characteristics of inside attackers since their goal 
must be different to that of normal nodes. Thus, a desired 
trust model must capture the unique aspects of inside attackers 
and consider them for trust evaluation. 

 

Consecutive failures 
We introduce one abnormal characteristic of packet 

drop attackers, consecutive failures (or consecutive drops). 
We believe that handling consecutive failures appropriately 
improves the early detection ability of a trust model 
because of two reasons. First, most packet drop attacks 
such as blackhole, grayhole, and on-off attack generate a 
certain degree of consecutive failures. Second, if the size of 
consecutive failures n grows, our belief that the node 

generating the n consecutive failures is not a normal node 
(that is, it is an attacker or a faulty node) will also grow 
based on the following probabilistic reasoning. Assuming 
that P[f] is the probability that a normal node generates a 
failure, as n grows, the probability that the n consecutive 
failures happens (P[f]n) decreases exponentially.   

Meanwhile, we observe that two trust models (beta trust 
model and entropy trust model) do not address consecutive 
failures as (1) and (2). Consider the two observations that 
contain 10 successes and 10 failures: fsfsfsfsfsfsfsfsfsfs and 
ssssssssssffffffffff. Both models will equally treat them 
although the latter looks more suspicious due to the recent 
10 consecutive failures according to the above reasoning. 
Moreover, it is often assumed that inside attackers launch 
attacks after they develop high trust to avoid being easily 
detected [24]. This assumption also supports our argument.  

We show how the two trust models fail to quickly 
detect a naive inside packet drop attacker through a simple 
analysis. Suppose that a node’ trust value is approximately 
1 (the node is very trustful) after it successfully forwarded 
1000 packets (that is, s = 1000), then the node starts 
dropping packets. As the number of consecutive failures n 
goes from 1 to 20, the upper two curves in Fig. 6 show how 
their trust values T drops; Trust values in beta trust model 
and entropy trust model are calculated by (1) and (2), 
respectively. Surprisingly, after 20 consecutive failures, the 
trust values in beta trust model and entropy trust model are 
0.979 and 0.927, respectively. Even for a very noisy 
channel with P[f] = 0.5, the event of 20 consecutive drops 
happens with probability 0.520 ( 10-8). Therefore, we need 
to build a new trust model that considers consecutive 
failures. Such model will give significant penalty on a 
node’s trust value when consecutive failures happen as 
shown in the bottom curve in Fig 6. 

 

 

 

Figure 6. Trust evaluation under consecutive attacks 
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Like this manner, we may find inside attackers’ abnormal 
behavioral characteristics that make them distinguishable 
from normal nodes. Various anomaly detection techniques 
[18, 19, 20] have been used to detect inside attackers in 
WSNs. Direct and indirect information can be used together 
to detect anomaly behaving nodes which are statistically 
deviated from normal nodes. However, most anomaly 
detection techniques demand nontrivial computation cost and 
message exchanges leading to high power consumption. 
Therefore, it is crucial to make them very suitable for WSNs.   

2) Hiding trust evaluation function from inside attackers 
If an inside attacker figures out how the trust evaluation 

function works, it can estimate its trust values at its 
neighbors based on its packet drop attack rate. Once the 
attacker knows its estimated trust values at others, it can 
intelligently adjust its attack rate and thus it will not be 
detected by its neighbors. Therefore, we must hide all critical 
functions (including source codes) appropriately from even 
the owner (sensor). In fact, a sensor node may not need to 
know the trust evaluation function or exact trust values to do 
certain trust-related operations. For example, for trust-based 
packet forwarding, a sender just needs to pick up a trustful 
next hop to send its packet to BS via the next hop instead of 
knowing the exact trust value of the next hop or how the next 
hop is chosen. That is, we must allow only authorized node 
to access only necessary information. This can be achieved 
by using cryptography, authentication, and authorization.  

However, there remains a risk that inside attackers may 
reverse engineer trust evaluation function to figure out how it 
works and estimate its own trust value at its neighbors in 
order to avoid being detected. Obfuscation [17, 27] can 
defend against inside attackers’ reverse engineering by 
making internal software (layout, design, and control) and 
data ambiguous and hard to interpret by the attackers. In 
addition, various software protection techniques such as 
watermarking, application performance degradation, and 
anti-debugging can be used in order to detect unauthorized 
access to the software, alter the software when it is accessed 
in unauthorized ways, and prevent attackers from using a 
debugger that tracks the execution of software by detecting 
the use of the debugger, respectively [16, 28]. 

C. Improving stage 3: detection based on direct trust  

1) Optimized trust threshold  
In stage 3, one problem is how we determine a trust 

threshold. In Fig. 6, assuming that we use beta trust model, if 
we simply set the threshold to 0.5, an inside attacker who 
forwarded 100 packets previously will not be detected even 
after 100 consecutive packet drops. Meanwhile, if we set the 
threshold to 0.99, there will be a high false alarm. 
Determining the value of threshold depends on applications 
that we use. For example, we may have a high threshold if 
the cost introduced from a high false alarm is very low in the 
application. Since there is a trade-off between detection and 
false alarm, we must make our best effort to find a trust 
threshold that maximizes detection rate and minimizes false 
alarm rate. A reasonable trust threshold can be determined 
theoretically or by well-designed simulation by considering 
our network environment and applications.  

2) Static trust threshold vs. dynamic trust threshold 
A trust threshold can be designed in static manner or 

dynamic manner. Static trust threshold might be optimal only 
for limited cases that we consider in the simulation. As a 
result, it may not be good for unconsidered situations. 
Meanwhile, dynamic trust threshold that adaptively changes 
according to situations in our network may have reasonably 
good results, although it may not be optimal for all situations. 
However, since dynamic trust threshold will be frequently 
computed, it must be designed in an energy-efficient way. 

D. Improving stage 4 and 5:collecting indirect information 
from neighbors and reputation evaluation 

In stage 4 and 5, for reputation evaluation, a node 
additionally utilizes indirect information (trust values or 
observations) from its neighbors. To defend against bad 
mouthing attack and conflict behavior attack mentioned in 
section IV, a couple of methods can be considered as follows.  

First, we should consider only trustful indirect 
information provided by trustful neighbors. This is obvious 
because the information from distrustful neighbors will 
corrupt reputation evaluation. Second, indirect information 
can be weighted according to the trust level of the 
information provider [4]. Third, redundancy and statistical 
methods can be used for detecting those attacks. Reputation, 
which is obtained by both direct and indirect trust, can 
defend against bad mouthing attack because the attacker’s 
misbehaviors will be different with what other neighbors 
observed [7]. In addition, if the number of good neighbors is 
larger than that of bad attackers, the bad mouthing attack can 
be mitigated and detected by majority voting or some 
statistical methods. Fourth, using multiple trust values on 
multiple types of behaviors is recommended in practice since 
a node might be distrustful for one behavior while it is 
trustful for another behavior [24]. For example, Sun et al [10] 
considered a special type of direct trust (recommendation 
trust) which is evaluated by nodes’ past recommendation 
behaviors. It is calculated as (sr+1)/(sr+fr+2) where sr and fr 
are the number of good and bad recommendations received 
from the evaluated node. They showed that considering two 
types of trust values together better mitigates inside attacks. 
Finally, we introduce a general principle on how many 
redundancies we must have in order to defend against k 
colluding inside attackers disrupting our decision system. In 
Lamport’s Byzantine agreement problem [6], 3k+1 nodes 
(redundancies) are required to achieve a reliable agreement 
by beating k misbehaving faulty nodes by using 2k+1 
correctly behaving nodes. Thus, critical decision functions in 
trust mechanism must be designed based on this principle.  

E. Improving stage 6: detection based on reputation  

We note that this part also can be applied to the stage 3. 
1) Avoidance  

Regardless of how elegant detection techniques we have, 
inside attackers with high trust value can drop a certain 
portion of packets because of the weaknesses of trust 
mechanism that we have explained. Therefore, we must have 
avoidance techniques to ensure that packets eventually reach 
to BS. Karlof and Wagner [5] mentioned k disjoint multipath 
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routing can completely defend against selective forwarding 
attacks involving at most k compromised nodes and still 
offer some probabilistic protection when there are more than 
k compromised nodes. Several works showing that multipath 
routing defends against inside attackers’ packet dropping can 
be found in [22, 26]. Similarly, Sun et al [9] introduced 
multiple data flow scheme using multiple disjoint topologies. 
In this scheme, a sending node sends its packet through one or 
more randomly chosen topologies among the pre-established 
multiple topologies to mitigate selective forwarding attacks.  

2)  Trade-off between redundancy and energy 
It is apparent that the more redundancies we have, the 

more reliable our network is. However, we must keep in 
mind the redundancies are the cost we must pay. For 
example, in n multipath routing, a sending node first 
determines n disjoint multiple paths from itself to BS and 
then sends n identical packets along the n disjoint paths. 
Consequently, this may introduce at least n times of 
computation complexity and power that a single path routing 
requires. In addition, the newly introduced workloads such as 
message exchanges that are required to manage disjoint 
paths may significantly degrade our network functions [25]. 
Therefore, we must utilize redundancy energy-efficiently.   

VI. CONCLUSION AND FUTURE WORK 

In this paper, we demonstrated how serious insider 
attacks can be in WSNs even with the presence of trust 
mechanism and watchdog, and introduced defending 
approaches to improve trust mechanism. We hope this paper 
would provide researchers who are interested in or currently 
working on trust mechanism with a brief, big picture about 
how we should improve trust mechanism to defend against 
inside attackers dropping packets. In the near future, we will 
design a reliable, energy-efficient trust mechanism for 
WSNs by considering the identified vulnerabilities and 
defending approaches in TABLE III. 
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