

Insider Threats against Trust Mechanism with Watchdog and Defending
Approaches in Wireless Sensor Networks

Youngho Cho and Gang Qu

Department of Electrical and Computer Engineering
and Institute for Systems Research

University of Maryland, College Park, USA
e-mail: {youngho, gangqu}@umd.edu

Yuanming Wu

School of Optoelectronic Information
University of Electronic Science and Technology

 Chengdu, Sichuan, China
e-mail: ymwu@uestc.edu.cn

Abstract—Trust based approaches have been widely used to
counter insider attacks in wireless sensor networks because
traditional cryptography-based security mechanisms such as
authentication and authorization are not effective against such
attacks. A trust model, which is the core component of a trust
mechanism, provides a quantitative way to evaluate the
trustworthiness of sensor nodes. The trust evaluation is
normally conducted by watchdog nodes, which monitor and
collect other sensors’ behavior information. Most existing
works mainly focus on the design of the trust models and how
these models can be used to defend against certain insider
attacks. However, these studies are empirical with the implicit
assumption that the trust models are secure and reliable. In
this paper, we discuss several security vulnerabilities that
watchdog and trust mechanisms have, examine how inside
attackers can exploit these security holes, and finally propose
defending approaches that can mitigate the weaknesses of trust
mechanism and watchdog.

Keywords-inside threats; trust mechanism; sensor networks

I. INTRODUCTION

Insider threat is an important security issue in wireless
sensor network (WSN) because traditional security
mechanisms, such as authentication and authorization,
cannot catch inside attackers who are legal members of the
network. Inside attackers can disrupt the network by
dropping, modifying, or misrouting data packets. This is a
serious threat for many applications such as military
surveillance system that monitors the battlefield and other
critical infrastructures.

Trust mechanism with the notion of trust in human
society has been developed to defend against insider attacks
[11, 12, 15, 24]. Since WSNs consist of hundreds or
thousands of tiny sensor nodes, the trust mechanism is often
implemented as a distributed system where each sensor can
evaluate, update, and store the trustworthiness of other
nodes based on the trust model.

In general, trust mechanism works in the following three
stages 1) node behavior monitoring, 2) trust measurement,
and 3) insider attack detection. Watchdog [8] is a popular
monitoring mechanism for the first stage. The other two
stages are processed by a trust model such as beta trust
model [4] and entropy trust model [10] using the data
collected by the watchdogs. In such trust mechanism, if an
inside attacker A keeps dropping packets from its neighbor

N, watchdog in N will monitor and record this misbehavior
by node A (stage 1). Then, node N will lower A’s trust value
(stage 2) and when the trust value goes below a trust
threshold, N will consider node A untrusted and remove it
from its neighbor list (stage 3).

However, there are several weaknesses in this seemingly
sound mechanism. First, watchdog has some security
vulnerabilities due to inherent weaknesses of WSNs such as
distributed sensors, limited transceiver range, and multi-hop
routing [5, 8]. Second, no trust model can completely prevent
inside attackers from dropping packets. This is because for a
particular packet drop, we cannot distinguish whether it is
dropped by an attacker or a result from contention or noise.
Thus, an inside attacker can disguise its malicious behavior
behind network traffic or noise. Third, we cannot ignore the
fact that insiders have internal knowledge about our network
and security mechanisms against attacks. By exploiting such
knowledge, inside attackers can launch their attacks
intelligently to avoid being detected.

We observe that many existing trust models adopting
watchdog as their monitoring mechanism do not explicitly
address these weaknesses. Our goal in this paper is to
demonstrate how serious insider attacks can be in WSNs
even with the presence of trust mechanism and watchdog,
and to introduce defending approaches to improve the trust
mechanism.

II. BACKGROUNDS

A. Packet forwarding in WSN with trust mechanism

To understand the behaviors of inside attackers, we first
explain how a sensor node forwards packets to another node
in a WSN with trust mechanism. We assume that CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance) is
used for wireless channel access in WSNs [1].

We consider the scenario that a source node S reports its
collected information (packets) to the base station (BS). The
routing path from S to BS is constructed following some
routing algorithm that allows multi-hop communication for
energy efficiency. For each intermediate node A in the
routing path, let NS be its Neighbor Set consisting of all its
neighbor nodes and FS (Forwarding Set) be the set of
candidate nodes that the packet may be forwarded to.
Apparently, FS is a subset of NS.

To forward packets to BS, node S first chooses a node T
from its FS as the next hop and sends the packet to T. Then

2012 IEEE Symposium on Security and Privacy Workshops

© 2012, Youngho Cho. Under license to IEEE.
DOI 10.1109/SPW.2012.32

134

IEEE CS Security and Privacy Workshops

134

S starts monitoring T’s behaviors. In the case when T
receives the packet, it will send an acknowledgement
message (ACK) back to S, and then forward the packet to
the next node in its FS toward the BS. When the watchdog
of S can overhear T’s forwarding, S considers T forwarded
its packet toward the BS and increases T’s trust value. If S
does not get the ACK message from T, S retransmits the
packet up to a pre-determined number of times, three for
example. If S does not get the ACK message even after the
maximum retransmissions, S discards the packet and
decreases T’s trust value based on the trust mechanism we
will elaborate later. If S gets the ACK message but does not
overhear T’s forwarding, S will reduce T’s trust value.

B. Insider attacks in WSNs

To secure our network, we assume our WSN is equipped
with cryptography-based authentication and authorization to
defend against outside attackers launching eavesdropping or
packet modification [5]. In this WSN, outside attacks may be
limited to directly damaging sensors by physical strike or
jamming. Meanwhile, inside attackers have some advantages
compared with outside attackers. First, inside attackers
damage our network stealthily since they can avoid our
authentication and authorization and it is not easy to expect
their attack patterns. Second, inside attackers can not only
damage sensors but also disrupt our network by dropping
critical packets or modifying packet information maliciously.

Inside attackers can launch various types of attacks in
active (modification, packet drop, or misrouting) or passive
(eavesdropping) way. While modification, misrouting, and
eavesdropping can be prevented to some extent by the
authentication and authorization, it is tricky to counter packet
drop attacks because for a particular packet drop, we cannot
distinguish whether it is dropped by an attacker or a result
from collision or noise. In addition, inside packet drop
attackers who are well positioned in the network (e.g., near
BS) can significantly degrade network performance such as
packet delivery rate due to their repeated packet drops.

There are several types of packet drop attacks such as
balckhole attack, grayhole attack, and on-off attack [10, 15]
as described in TABLE I. Compared to blackhole attack, it is
harder to detect grayhole attack and on-off attack due to their
complicated attack patterns. Moreover, packet drop attacks
have evolved to intelligently drop packets by exploiting
inside knowledge about our network and security mechanism
to avoid being detected [15]. For this reason, in this paper,
we mainly focus on inside attackers’ packet drop attacks.

TABLE I. INSIDER PACKET DROP ATTACKS AND DESCRIPTION

Attack Description
No attack Forward all packets

Blackhole attack Drop all packets

Grayhole attack Drop (specific) packets randomly

On-off attack Drop all or some portion of packets periodically

C. Watchdog

Marti et al [8] introduced a monitoring mechanism
known as watchdog to identify misbehaving nodes in

wireless ad hoc networks. In their approach, each sensor
node has its own watchdog that monitors and records its one
hop neighbors’ behaviors such as packet transmission. When
a sending node S sends a packet to its neighbor node T, the
watchdog in S verifies whether T forwards the packet toward
the BS or not by using the sensor’s overhearing ability within
its transceiver range.

In this mechanism, S stores all recently sent packets in its
buffer, and compares each packet with the overheard packet
to see whether there is a match. If yes, it means that the
packet is forwarded by T and S will remove the packet from
the buffer. If a packet remains in the buffer for a period longer
than a pre-determined time, the watchdog considers that T
fails to forward the packet and will increase its failure tally for
T. If a neighbor’s failure tally exceeds a certain threshold, it
will be considered as a misbehaving node by S.

Watchdog works similarly with trust mechanism in that
trust model evaluates each sensor’s trustworthiness based on
the past behaviors in much sophisticated ways. In this paper,
to avoid any confusion, we consider that watchdog is a
component in the trust mechanism and it is responsible for
node behavior monitoring.

D. Trust mechanism

In general, trust mechanism works in the following stages.
1) Node behavior monitoring: Each sensor node

monitors and records its neighbors’ behaviors such as packet
forwarding. This collected data will be used for
trustworthiness evaluation in the next stage. Watchdog is a
monitoring mechanism popularly used in this stage. The
confidence of the trustworthiness evaluation depends on how
much data a sensor collects and how reliable such data is.

2) Trust measurement: Trust model defines how to
measure the trustworthiness of a sensor node. Yu et al [15]
introduced several representative approaches to build the
trust model, which include Bayesian approach, Entropy
approach, Game-theoretic approach, and Fuzzy approach.
The trust value of a node may be different when we use
different trust models. For example, when a node is observed
to forward the packet s times and drops the packet f times,
the beta trust model [4] will assign trust value T (0 T 1)
to this node using the following formula

.
2

1

++

+
=

fs

s
T

(1)

Meanwhile, entropy trust model [10] uses entropy function
H(p), whose input p is the trust value that can be obtained
from beta trust model, to determine the trust value T. The
entropy function)1(log)1(log)(22 pppppH −−−−= and
the trust value T (–1 T 1) is defined by

<≤−

≤≤−
=

.5.00,1)(

;15.0),(1

pforpH

pforpH
T

(2)

135135

3) Inside attack detection: Based on the trust value, a
sensor node determines whether its neighbor is trustworthy
for collaboration (such as packet forwarding). If a
neighbor’s trust value is less than a certain threshold T, it
will be considered as an untrusted or malicious node.
Depending on the WSN’s trust mechanism, the detection of
such insider attacker may or may not be broadcast to the rest
of the nodes in the WSN.

III. VULNERABILITIES OF TRUST MECHANISM

A. Limitations of watchdog

In [8], Marti et al pointed out that watchdog has the
limitation of not being able to detect a misbehaving node in
the presence of the following cases. We examine each case
using the path S A B C BS in Fig. 1 as an example.

 1) Ambiguous collision: Consider the situation that A
forwards a packet to B, and then starts to overhear whether B
will forward the packet to C. However, when B forwards to
C, A may not overhear this transmission if other neighbors
(such as S) send packets to A at the same time. This
ambiguous collision may mislead A to conclude that B is
malicious, which may not be correct.

2) Receiver collision: Similar to the above case, collision
may also occur at the receiver side C resulting C does not
receive the packet correctly. A can only overhear that B has
forwarded the packet, but A cannot tell whether C has
received. When this happens, (malicious) node B can
intentionally skip retransmissions or (malicious) node C can
generate collision on purpose to avoid receiving the packet
and to force B into retransmitting.

3) Limited transmission power: If B adjusts its
transmission power such that A can overhear but C cannot
receive, B can drop packets and increase its trustworthiness (to
node A). In geographic routings where every node knows the
positions of itself and its neighbors, B can easily launch this
attack by selecting a node C from its FS such that dist (B, C) >
dist (B, A) where dist (i, j) is a distance between node i and j.

4) False misbehavior: This case happens when a
malicious node intentionally reports that other nodes are
misbehaving. For example, A may report B is dropping
packets although B is not. Then, A’s neighbor such as node S,
who cannot directly communicate (and thus monitor) B, will
consider B malicious.

5) Collusion: Multiple colluding attackers can launch
more sophisticated attacks. For example, two malicious
colluding node A and B can completely deceive S if A
forwards all packets from S to B, but B drops all the packets.
Because S cannot overhear B’s misbehaviors, S will not
consider A and B malicious.

6) Partial dropping: Instead of dropping all packets, B
can drop only some packets such that the failure tally will
not exceed the detection threshold of A’s watchdog. This is
similar with grayhole attack.

B. Vulnerabilities in trust mechanism

We now examine the security weaknesses in each of the
aforementioned three stages of a trust mechanism.

BSCBAS
ACK

Packet

ACK

Packet

ACK

Packet

ACK

Packet

⎯⎯ ⎯←

⎯⎯⎯ →⎯

⎯⎯ ⎯←

⎯⎯⎯ →⎯

⎯⎯ ⎯←

⎯⎯⎯ →⎯

⎯⎯ ⎯←

⎯⎯⎯ →⎯

Figure 1. A routing path having three intermediate nodes A, B, and C

1) Vulnerabilities in the node behavior monitoring stage
In this stage, data will be collected for the evaluation of

trust value in the later stages. Collecting reliable and trusted
data will be vital. If this stage is contaminated by inside
attackers, the entire trust mechanism will fail. As we focus
on trust mechanisms that rely on watchdog for data
collection, this stage will have the same vulnerabilities as
those for watchdog in the previous section, particularly the
first three: ambiguous collision, receiver collision, and
limited transmission power. The other weaknesses of
watchdog are closely related to the next two stages.

2) Vulnerabilities in the trust measurement stage
The key threat in this stage is that an inside attacker may

figure out the trust mechanism and the associated parameters
such as the trust (or trustworthiness) threshold T being used.
Due to the simplicity of the data collected in the previous
stage and the limited available trust model (normally with
low computation complexity), it will not be hard to reverse
engineer to do this. To make it even worse, it is not
necessary for the inside attacker to know the exact
information of the trust model to launch insider attacks
without being detected. For example, dropping packets as
long as the insider attacker estimates its trust value will be
above the estimated trust threshold. We will elaborate more
about this next.

3) Vulnerabilities in the inside attacker detection stage
In this stage, a node is classified as either trustful or

distrustful. The value of the trust threshold (T) that is used
for such classification is the single most important parameter
at this stage. A low T will misclassify attackers as trustful
nodes and a high T will cause unnecessary false alarm. T
must be carefully determined to maximize attacker detection
rate and minimize false alarm rate.

However, if an attacker gets a reasonably good
estimation on the value of T, insider attacks can be
launched without being detected. As shown below in Table
II, if the attacker assumes T = 0.7, after certain number of
initial successful forwarding (to build a high trust value), the
attacker can drop a considerable number of packets
consecutively without bringing its trustworthiness to 0.7 or
below. For example, with s = 1000 previous successful
forwarding, the next 428 packets can be dropped without
being detected by the beta trust model, and 170 packets can
be dropped if the entropy model is used.

TABLE II. BLACKHOLE ATTACKER’S MAXIMUM PACKET DROPS
(PACKET DROP RATE) WITHOUT BEING DETECTED BY TRUST MODELS

Trust
model

Number of previous successful forwarding (s)

10 100 200 300 500 1000

Beta 3
(30%)

42
 (42%)

85
(42.5%)

128
(42.6%)

213
(42.6%)

428
(42.8%)

Entropy 0
(0%)

16
(16%)

33
(16.5%)

50
(16.6%)

84
(16.8%)

170
(17%)

136136

NMS
ACK

Packet

ACK

Packet

⎯⎯ ⎯←

⎯⎯⎯ →⎯

⎯⎯ ⎯←

⎯⎯⎯ →⎯
21 MMS

ACK

Packet

ACK

Packet

⎯⎯ ⎯←

⎯⎯⎯ →⎯

⎯⎯ ⎯←

⎯⎯⎯ →⎯
3

2

1
M

M

M
S

Packet

Packet

Packet

Packet

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯

⎯⎯⎯ →⎯
MS

B

A

ACK

Packet

T

T

MB

MA

⎯⎯ ⎯←

⎯⎯⎯ →⎯

⎯⎯ →⎯

⎯⎯ →⎯

,

,

Figure 2. Single attacker Figure 3. Two colluding attackers Figure 4. Three colluding attackers Figure 5. Reputation evaluation

IV. INSIDER THREAT ANALYSIS

In this section, we examine how inside attackers can defeat
the trust mechanism combined with watchdog by exploiting the
weaknesses that we have explained in section III. We first set
up the goal of inside attackers, show various ways to break the
network, and measure quantitatively the damage by attackers.

The goal of inside attackers is to maximize the damage
on the network by preventing the collected data from
reaching the BS. At the same time, they want to hide
themselves so as not to be detected by the trust mechanism.
As we have mentioned earlier, we focus our discussion on
packet drop attacks. To measure the amount of damage
caused by inside attackers, we use maximum packet drop
rate (MPDR) defined below as the metric

100)/((%) ×= RD NNMPDR

(3)

where ND is the total number of dropped packets and NR is
the total number of received packets.

We now analyze three cases of inside threats: single
inside attacker, multiple colluding inside attackers, and
inside attacker that does more than dropping packets.

A. Single inside attacker (M)

Consider the malicious node M sits between the source
node S and a normal node N as shown in Fig. 2. For routing
protocols that use greedy forwarding approach such as the
popular GPSR (Greedy Perimeter Stateless Routing) [23],
node S chooses only its next hop M. S does not know to
which node M will forward the packet and may not
communicate directly with that node due to limited
transceiver coverage.

If M receives a packet from S, sends ACK back to S,
and forwards the packet to N, we consider that M behaves
normally. After S sends a packet to M, there are four ways
when the packet is dropped maliciously at node M: (d1) M
does not receive the packet; (d2) M receives the packet but
does not send ACK back to S; (d3) M receives the packet,
sends ACK back to S, but drops the packet; (d4) M receives
the packet, sends ACK back to S, and forwards the packet to
N maliciously such that N cannot receive the packet.

The first three cases (d1–d3) will be caught by the
watchdog at node S because the watchdog will not observe
either M’s ACK or M’s forwarding behavior. When M uses
these attacks, it will be caught and S will reduce M’s trust
value. However, M can still use these when its current trust
value is high and a single drop will not lower its trust value
to be below the trust threshold T. In this case, MPDR
depends on trust model and T. We have seen this in Table
II where the MPDR values are shown inside the ()’s.

In case (d4), M may be able to simultaneously avoid

being detected by the watchdog and increase its trust value
at node S. There are several ways to implement this. For
example, M may exploit the weaknesses of watchdog we
have discussed in section III (for instance, adjusts the
transmission power such that S can overhear but N cannot
receive the forwarded packet). M can also forward the
packet to a non-existing node (or a dead node that has run
out of battery) and let S overhear the forwarding. In this
case, MPDR can reach 100%, which means that M can drop
all the packets while it maintains high trust value from S.

B. Multiple colluding inside attackers (M1, M2, M3, …)

Multiple colluding inside attackers can achieve their goal
much easier than a single inside attacker can. Consider two
colluding attackers M1 and M2 who are neighbors in a
routing path as shown in Fig. 3. M1 will ACK on the
reception of packets from S and forward them to M2. This
will convince the watchdog in S to increase M1’s trust value.
However, when the watchdog in S cannot overhear M2, M2
can use any of packet drop methods (d1–d4) and drop all the
packets received from M1 without being detected by S.

However, this sequential placement of attackers may not
generate the largest MPDR. In fact, the actual damage on S
depends on the total number of packets that the first attacker
M1 receives from S. The actual MPDR will become much
lower if S distributes its packets to several neighbors to
balance workloads for energy-efficiency or to avoid hidden
attackers for security. For example, if we assume that S has
four neighbors including one attacker M1 in FS and evenly
distributes its packets to the four neighbors, M will get 25%
of packets from S and the actual MPDR will be 25%.

For this reason, attackers will try to receive as many
packets as possible from S in order to maximize the damage
on S. In general, routing algorithm has one or more decision
metrics that determine the next hop. For example, if trust is
the most important decision metric, a node with the highest
trust value in FS will receive all or the largest number of
packets from S depending on the next hop selection
algorithm. If inside attackers have this knowledge, the first
attacker M1 will try to maintain a high trust value by
faithfully collaborating with S and the second attacker M2
will drop S’s all packets forwarded by M1. Another way to
increase the damage on S is to additionally deploy inside
attackers near S. Fig. 4 shows three colluding attackers M1,
M2, and M3. M1 and M2 are positioned within S’s one hop
distance, and M3 is two hops away from S. If S has four
neighbors including M1 and M2 in FS, M1 and M2 will
receive at least 50% of packets from S, and M3 will drop all
packets received from M1 and M2. Thus, the actual damage
on S grows to more than 50%.

137137

Meanwhile, trust mechanism in WSNs has evolved to
overcome a single sensor’s weakness (limited information
about its neighbors) by using indirect information provided
by neighbor nodes [7, 10, 15, 24]. That is, a node can get
reputation value about its neighbor by considering both
direct trust value by itself and indirect trust values (or
indirect observations) by its neighbors. In Fig. 5, S has two
good neighbors A and B who are also communicating with
malicious node M. Then, each S, A, and B will have direct
trust value about M as TS,M, TA,M, and TB,M, respectively. By
combining the three trust values as RS,M= f (TS,M, TA,M, TB,M)
where f () is a reputation evaluation function, S can obtain
reputation value RS,M about M. We show how S can utilize
this information to see if M is malicious through a simple
example. Consider the following situation in Fig. 5. M is
smartly dropping packets received from its neighbors S, A,
and B. To maximize the damage on them, M maintains it
trust values at S, A, and B as slightly higher than T. In this
case, if S uses only its own trust value, M will not be
detected. On the other hand, consider that S evaluates M’s
reputation by using a simple reputation evaluation function
as RS,M = TS,M + TA,M + TB,M – penalty (TS,M, TA,M, TB,M,)
where 0 , , 1, + + =1, and penalty () is a user-
defined function that grows as all inputs (trust values) are
close to T. In this approach, RS,M will be lowered below T.
Unfortunately, inside attackers also have evolved intelligently
to avoid trust mechanism.

C. Intelligent inside attacks against trust mechanism

In this part, we introduce several sophisticated attacks
exploiting the mathematical or logical vulnerabilities of trust
mechanism. There are three types of attacks that directly
disrupt trust mechanism such as bad mouthing attack,
conflict behavior attack, and intelligent behavior attack [3, 7,
10, 15]. We introduce how each attack works in brief.

In bad mouthing attack, attackers spread negative
information (trust or reputation value) about good nodes. Let
us assume that A and B are malicious but M is good in Fig. 5.
If A and B provide S with dishonest bad indirect trust values
about M, S may falsely distrust M and discard M. Similarly,
A and B may provide S with dishonest good indirect trust
values about themselves to increase their trust values at S.

In conflicting behavior attack, attackers impair good
nodes’ indirect trust (or recommendation) by behaving
differently to different nodes. Let us assume that an inside
attacker M behaves nicely to A and behaves badly to B in
Fig. 5. A and B will have different observations about M.
When they exchange indirect trust values about M, A may
not trust B’s indirect trust value about M, and vice versa. As
a result, it causes conflict opinions between two good nodes.

In intelligent behavior attack, attackers selectively adjust
their behaviors based on intercepted or reverse engineered
critical data that affect reputation evaluation, such as trust
value or trust threshold. If attackers obtain the data, they can
safely launch attacks without being detected by adaptively
behaving nicely or badly. By definition, this attack includes
most misbehaving attacks that exploit inside knowledge
about the network and trust mechanism.

V. DEFENDING APPROACHES

Throughout previous sections, we have shown that even
single security vulnerability in trust mechanism can be
exploited by inside attackers, thus resulting in a huge damage
on our network. Therefore, we must eliminate the identified
vulnerabilities and have countermeasures that defend against
inside attackers exploiting the security holes. In TABLE III,
we list the working stages of a general trust mechanism at the
first column and related security vulnerabilities and attacks at
the second column. In this section, we present how we can
mitigate the security vulnerabilities in each step and some
existing works with their advantages and limitations (at the
third column). We also introduce some research ideas.

A. Improving stage 1: behavior monitoring

1) Neighbor-based monitoring
A sender S cannot completely monitor misbehaviors of a

receiver or multiple colluding attackers due to its limited
overhearing distance. One way of improving this limitation
is to virtually extend S’s monitoring coverage by helps from
other neighbors who can also monitor all forwarding
participants’ behaviors in a routing path. This approach can
mitigate several types of colluding attacks that we have
shown in previous sections. In the example of two colluding
attackers M1 and M2 positioned in a routing path
S M1 M2 BS, we explained M2 can drop all packets
without being detected by S due to the S’s limited
overhearing distance. On the contrary, in this approach, M2’s
misbehaviors can be detected by common good neighbors
(called guard nodes in [21]) of M1 and M2. Moreover, the
guard nodes will easily detect M1’s misbehaviors, since they
observe that M1 violates trust mechanism because M1 keeps
forwarding packets to M2 although M2 keeps dropping all
packets received from M1. For another example, guard
nodes can detect whether an attacker sent a packet to a non-
existing node by trying to contact the non-existing node. In
addition, power-adjusting attack can be detected by guard
nodes examining whether or not the strength of transmission
power is enough to reach to the receiving node.

Several works [2, 14, 21] that used neighbor-based
approach have been introduced in order to mitigate selective
forwarding attacks. In [14], when an inside attacker drops a
packet, a monitoring neighbor (called monitor node) alarms it
to S and BS and also sends a copied packet to BS along a new
routing path that is disjoint with the original routing path.

However, there are some limitations in these approaches.
First, they do not address how their approaches can counter
M2’s selective packet drops against S. If M2 stores enough
packets received from multiple nodes in its forwarding
buffer, M2 can safely pinpoint S’s packets by using a simple
scheduling method so as not to trigger neighbor nodes’ alert
mechanism. To defend against M2’s selective forwarding
attack, neighbor nodes must be able to figure out which
source node is under selective forwarding attack. In addition,
a serious problem happens when neighbor nodes falsely
accuse good nodes of attackers. In this case, we must have a
countermeasure that not only detects selective forwarding
attackers but also locates the misbehaving guard nodes.

138138

TABLE III. SECURITY VULNERABILITIES IN TRUST MECHANISM AND DEFENDING APPROACHES

Working stages Security vulnerabilities/Attacks Defending approaches

Direct

 1. Behavior monitoring based on
 watchdog

 Limited overhearing/ Intentional collision,
 false behavior, collusion, partial dropping

 Neighbor-based monitoring, acknowledgement-based
 monitoring, indirect observation

2. Direct trust evaluation
 (or direct trust measurement)

 Limited information/ Reverse engineering
 Anomaly detection (e.g., consecutive failures), hiding trust
 evaluation mechanism (e.g., software/data obfuscation)

 3. Detection based on direct trust
 Incomplete trust threshold, miss detection
 and false alarm/ Reverse engineering

 Optimized trust threshold, dynamic trust threshold,
 avoidance (e.g., multipath routing), redundancy

Indirect
(extended)

4. Collecting indirect information
 (recommendation) from neighbors

 Unreliable information/ False behavior, bad
 mouthing, conflict behavior attack

 Anomaly detection (eliminating erroneous measurement),
 redundancy (k fault tolerance)

5. Reputation evaluation based on
 both direct and indirect information

 Unreliable information/ Reverse engineering
 Anomaly detection, hiding trust evaluation mechanism
 (e.g., software/data obfuscation)

 6. Detection based on reputation
 Incomplete trust threshold, miss detection
 and false alarm/ Reverse engineering

 Optimized trust threshold, dynamic trust threshold,
 avoidance (e.g., multipath routing), redundancy

2) Acknowledgement-based monitoring
Xio et al [13] proposed a multi-hop acknowledgement

scheme to detect selective forwarding attacks. In this
approach, some randomly chosen nodes (called checkpoints)
in a routing path report ACKs back to source node S (hop by
hop) by using the same but reversed routing path when they
receive a packet. If a previous checkpoint does not receive
ACK from a next checkpoint, it reports an alert ACK to S or
BS hop by hop along the same path. Then, S figures out
which nodes are malicious or suspicious based on collected
ACKs from checkpoints, and then discards them. However,
this approach has some weaknesses. First, while an ACK
traverses back to S, insider attackers in the routing path can
drop it as they dropped packets. Second, it is unclear how to
accurately locate inside attackers. Third, it fails to handle
when this checkpoints nodes falsely prosecute good nodes.

B. Improving stage 2: direct trust evaluation

1) Anomaly detection
To the best of our knowledge, there is no existing work

focusing on defending against intelligent behavior attack. To
counter this attack, first, we must prevent inside attackers
from obtaining critical information such as trust value and
trust evaluation procedure. However, this may not be
completely achieved because insider attackers may be able to
steal that information through reverse engineering; we will
further explain about this later. Second, we must detect
inside attackers by accurately measuring trust values of
nodes and then classifying nodes into two groups (bad and
good) based on the trust threshold. There must be certain
unique characteristics of inside attackers since their goal
must be different to that of normal nodes. Thus, a desired
trust model must capture the unique aspects of inside attackers
and consider them for trust evaluation.

Consecutive failures
We introduce one abnormal characteristic of packet

drop attackers, consecutive failures (or consecutive drops).
We believe that handling consecutive failures appropriately
improves the early detection ability of a trust model
because of two reasons. First, most packet drop attacks
such as blackhole, grayhole, and on-off attack generate a
certain degree of consecutive failures. Second, if the size of
consecutive failures n grows, our belief that the node

generating the n consecutive failures is not a normal node
(that is, it is an attacker or a faulty node) will also grow
based on the following probabilistic reasoning. Assuming
that P[f] is the probability that a normal node generates a
failure, as n grows, the probability that the n consecutive
failures happens (P[f]n) decreases exponentially.

Meanwhile, we observe that two trust models (beta trust
model and entropy trust model) do not address consecutive
failures as (1) and (2). Consider the two observations that
contain 10 successes and 10 failures: fsfsfsfsfsfsfsfsfsfs and
ssssssssssffffffffff. Both models will equally treat them
although the latter looks more suspicious due to the recent
10 consecutive failures according to the above reasoning.
Moreover, it is often assumed that inside attackers launch
attacks after they develop high trust to avoid being easily
detected [24]. This assumption also supports our argument.

We show how the two trust models fail to quickly
detect a naive inside packet drop attacker through a simple
analysis. Suppose that a node’ trust value is approximately
1 (the node is very trustful) after it successfully forwarded
1000 packets (that is, s = 1000), then the node starts
dropping packets. As the number of consecutive failures n
goes from 1 to 20, the upper two curves in Fig. 6 show how
their trust values T drops; Trust values in beta trust model
and entropy trust model are calculated by (1) and (2),
respectively. Surprisingly, after 20 consecutive failures, the
trust values in beta trust model and entropy trust model are
0.979 and 0.927, respectively. Even for a very noisy
channel with P[f] = 0.5, the event of 20 consecutive drops
happens with probability 0.520 (10-8). Therefore, we need
to build a new trust model that considers consecutive
failures. Such model will give significant penalty on a
node’s trust value when consecutive failures happen as
shown in the bottom curve in Fig 6.

Figure 6. Trust evaluation under consecutive attacks

139139

Like this manner, we may find inside attackers’ abnormal
behavioral characteristics that make them distinguishable
from normal nodes. Various anomaly detection techniques
[18, 19, 20] have been used to detect inside attackers in
WSNs. Direct and indirect information can be used together
to detect anomaly behaving nodes which are statistically
deviated from normal nodes. However, most anomaly
detection techniques demand nontrivial computation cost and
message exchanges leading to high power consumption.
Therefore, it is crucial to make them very suitable for WSNs.

2) Hiding trust evaluation function from inside attackers
If an inside attacker figures out how the trust evaluation

function works, it can estimate its trust values at its
neighbors based on its packet drop attack rate. Once the
attacker knows its estimated trust values at others, it can
intelligently adjust its attack rate and thus it will not be
detected by its neighbors. Therefore, we must hide all critical
functions (including source codes) appropriately from even
the owner (sensor). In fact, a sensor node may not need to
know the trust evaluation function or exact trust values to do
certain trust-related operations. For example, for trust-based
packet forwarding, a sender just needs to pick up a trustful
next hop to send its packet to BS via the next hop instead of
knowing the exact trust value of the next hop or how the next
hop is chosen. That is, we must allow only authorized node
to access only necessary information. This can be achieved
by using cryptography, authentication, and authorization.

However, there remains a risk that inside attackers may
reverse engineer trust evaluation function to figure out how it
works and estimate its own trust value at its neighbors in
order to avoid being detected. Obfuscation [17, 27] can
defend against inside attackers’ reverse engineering by
making internal software (layout, design, and control) and
data ambiguous and hard to interpret by the attackers. In
addition, various software protection techniques such as
watermarking, application performance degradation, and
anti-debugging can be used in order to detect unauthorized
access to the software, alter the software when it is accessed
in unauthorized ways, and prevent attackers from using a
debugger that tracks the execution of software by detecting
the use of the debugger, respectively [16, 28].

C. Improving stage 3: detection based on direct trust

1) Optimized trust threshold
In stage 3, one problem is how we determine a trust

threshold. In Fig. 6, assuming that we use beta trust model, if
we simply set the threshold to 0.5, an inside attacker who
forwarded 100 packets previously will not be detected even
after 100 consecutive packet drops. Meanwhile, if we set the
threshold to 0.99, there will be a high false alarm.
Determining the value of threshold depends on applications
that we use. For example, we may have a high threshold if
the cost introduced from a high false alarm is very low in the
application. Since there is a trade-off between detection and
false alarm, we must make our best effort to find a trust
threshold that maximizes detection rate and minimizes false
alarm rate. A reasonable trust threshold can be determined
theoretically or by well-designed simulation by considering
our network environment and applications.

2) Static trust threshold vs. dynamic trust threshold
A trust threshold can be designed in static manner or

dynamic manner. Static trust threshold might be optimal only
for limited cases that we consider in the simulation. As a
result, it may not be good for unconsidered situations.
Meanwhile, dynamic trust threshold that adaptively changes
according to situations in our network may have reasonably
good results, although it may not be optimal for all situations.
However, since dynamic trust threshold will be frequently
computed, it must be designed in an energy-efficient way.

D. Improving stage 4 and 5:collecting indirect information
from neighbors and reputation evaluation

In stage 4 and 5, for reputation evaluation, a node
additionally utilizes indirect information (trust values or
observations) from its neighbors. To defend against bad
mouthing attack and conflict behavior attack mentioned in
section IV, a couple of methods can be considered as follows.

First, we should consider only trustful indirect
information provided by trustful neighbors. This is obvious
because the information from distrustful neighbors will
corrupt reputation evaluation. Second, indirect information
can be weighted according to the trust level of the
information provider [4]. Third, redundancy and statistical
methods can be used for detecting those attacks. Reputation,
which is obtained by both direct and indirect trust, can
defend against bad mouthing attack because the attacker’s
misbehaviors will be different with what other neighbors
observed [7]. In addition, if the number of good neighbors is
larger than that of bad attackers, the bad mouthing attack can
be mitigated and detected by majority voting or some
statistical methods. Fourth, using multiple trust values on
multiple types of behaviors is recommended in practice since
a node might be distrustful for one behavior while it is
trustful for another behavior [24]. For example, Sun et al [10]
considered a special type of direct trust (recommendation
trust) which is evaluated by nodes’ past recommendation
behaviors. It is calculated as (sr+1)/(sr+fr+2) where sr and fr
are the number of good and bad recommendations received
from the evaluated node. They showed that considering two
types of trust values together better mitigates inside attacks.
Finally, we introduce a general principle on how many
redundancies we must have in order to defend against k
colluding inside attackers disrupting our decision system. In
Lamport’s Byzantine agreement problem [6], 3k+1 nodes
(redundancies) are required to achieve a reliable agreement
by beating k misbehaving faulty nodes by using 2k+1
correctly behaving nodes. Thus, critical decision functions in
trust mechanism must be designed based on this principle.

E. Improving stage 6: detection based on reputation

We note that this part also can be applied to the stage 3.
1) Avoidance

Regardless of how elegant detection techniques we have,
inside attackers with high trust value can drop a certain
portion of packets because of the weaknesses of trust
mechanism that we have explained. Therefore, we must have
avoidance techniques to ensure that packets eventually reach
to BS. Karlof and Wagner [5] mentioned k disjoint multipath

140140

routing can completely defend against selective forwarding
attacks involving at most k compromised nodes and still
offer some probabilistic protection when there are more than
k compromised nodes. Several works showing that multipath
routing defends against inside attackers’ packet dropping can
be found in [22, 26]. Similarly, Sun et al [9] introduced
multiple data flow scheme using multiple disjoint topologies.
In this scheme, a sending node sends its packet through one or
more randomly chosen topologies among the pre-established
multiple topologies to mitigate selective forwarding attacks.

2) Trade-off between redundancy and energy
It is apparent that the more redundancies we have, the

more reliable our network is. However, we must keep in
mind the redundancies are the cost we must pay. For
example, in n multipath routing, a sending node first
determines n disjoint multiple paths from itself to BS and
then sends n identical packets along the n disjoint paths.
Consequently, this may introduce at least n times of
computation complexity and power that a single path routing
requires. In addition, the newly introduced workloads such as
message exchanges that are required to manage disjoint
paths may significantly degrade our network functions [25].
Therefore, we must utilize redundancy energy-efficiently.

VI. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated how serious insider
attacks can be in WSNs even with the presence of trust
mechanism and watchdog, and introduced defending
approaches to improve trust mechanism. We hope this paper
would provide researchers who are interested in or currently
working on trust mechanism with a brief, big picture about
how we should improve trust mechanism to defend against
inside attackers dropping packets. In the near future, we will
design a reliable, energy-efficient trust mechanism for
WSNs by considering the identified vulnerabilities and
defending approaches in TABLE III.

VII. ACKNOWLEDGEMENT

This material is based upon work supported in part by the
Air Force Office of Scientific Research (AFOSR/RSL) under
Award No. #FA95501010140.

REFERENCES
[1] Azahdeh Faridi et al, “Comprehensive Evaluation of the IEEE 802.15.4

MAC Layer Performance With Retransmissions,” IEEE Transactions
on Vehicular Technology, Vol.59, No.8, October 2010, pp. 3917-3932.

[2] Tran Hoang Hai and Eui-Nam Huh, “Detecting Selective Forwarding
Attacks in Wireless Sensor Networks Using Two-hops Neighbor
Knowledge,” Seventh International Symposium on Network
Computing and Applications (NCA ’08), July 2008, pp. 325-331.

[3] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of Attack and Defense
Techniques for Reputation Systems,” ACM Computing Surveys, Vol 41, Issue 4, 2009.

[4] A. Josang and R. Ismail, “The Beta Reputation System,” In Proc. of
the 15th Bled Electronic Commerce Conference, June 2002.

[5] Chris Karlof and David Wagner, “Secure routing in wireless sensor
networks: attacks and countermeasures,” Ad Hoc Networks Journal,
Vol.1, Issue 2-3, 2003, pp. 293-315.

[6] Leslie Lamport, Robert Shostak, and Marshall Pease, “The Byzantine
Generals Problem,” ACM Transactions on Programming Languages
and Systems, Vol. 4, No. 3, July 1982, pp. 382-401.

[7] Jie Li, Ruidong Li, and Jien Kato, “Future Trust Management
Framework for Mobile Ad Hoc Networks,” IEEE Communication
Magazine, Vol 46, Issue 4, 2008, pp.108-114.

[8] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker, “Mitigating
Routing Misbehavior in Mobile and Ad Hoc Networks,” In Proc. of
International Conference on Mobile Computing and Networking
(Mobicom), 2000, pp. 255-265.

[9] Hung-Min Sun, Chien-Ming Che, and Ying-Chu Hsiao, “An efficient
countermeasure to the selective forwarding attack in wireless sensor
network,” IEEE Region 10 Conference (TENCON), 2007, pp.1-4.

[10] Yan (Lindsay) Sun, Zhu Han, and K. J. Ray Liu, “Defense of Trust
Management Vulnerabilities in Distributed Networks,” IEEE
Communications Magazine, Vol 46, Issue 2, 2008, pp.112-119.

[11] Denis Tr ek, “Trust management in the pervasive computing era,”
IEEE Security & Privacy, Vol. 9, No. 4, July 2011, pp. 52-55.

[12] Vijay Varadharajan, “A Note on Trust-Enhanced Security”, IEEE
Security & Privacy, Vol. 7, Issue 3, May/June 2009, pp. 57-59.

[13] Bin Xiao, Bo Yu, Chuanshan Gao, “CHEMAS: Identify suspect
nodes in selective forwarding attacks,” Journal of Parallel and
Distributed Computing, 67, 2007, pp. 1218-1230.

[14] Wang Xin-sheng, Zhan Yong-zhao, Xiong Shu-ming, and Wang Liang-
min,“Lightweight defense scheme against selective forwarding attacks
in wireless sensor networks,” Intl. Conf. on Cyber-Enabled Distributed
and Knowledge Discovery (CyberC), 2009, pp. 226-232.

[15] Yanli Yu, Keqiu Li, Wanlei Zhou, and Ping Li, “Trust mechanisms in
wireless sensor networks: attack analysis and countermeasures,” Journal
of Network and Computer Applications, Elsevier, 2011, in press.

[16] Martin R. Stytz and James A. Whitaker, “Software Protection: Security’s
Last Stand?” IEEE Security & Privacy, Vol 1, Issue 1, 2003, pp. 95-98.

[17] David E. Bakken, Rupa Parameswaran, Douglas M. Blough, Ty J. Palmer,
and Andy A. Franz, “Data Obfuscation: Anonymity and Desensitization of
Usable Data Sets,” IEEE Security & Privacy, Vol 2, Issue 6, 2004, pp. 34-41.

[18] Fang Liu, Xiuzhen Cheng, and Dechang Chen, “Insider Attacker
Detection in Wireless Sensor Networks,” IEEE International Conf. on
Computer Communications (INFOCOM), May 2007, pp. 1937-1945.

[19] Miao Xie, Song Han, Biming Tian, and Sazia Parvin, “Anomaly
detection in wireless sensor networks: A survey,” Journal of Network
and Computer Applications 34, 2011, pp. 1302-1325.

[20] Sutharshan Rajasegarar, Christopher Leckie, and Marimuhu
Palaniswami, “Anomaly Detection In Wireless Sensor Networks,”
IEEE Wireless Communications, 2008, pp. 34-40.

[21] Issa Khalil, Saurabh Bagchi, Cristina N. Rotaru, Ness B. Shroff,
“UnMask: Utilizing neighbor monitoring for attack mitigation in
multihop wireless sensor networks,” Ad Hoc Networks, in press, 2009.

[22] Y. Challal, A. Ouadjaout, N. Lasla, M. Bagaa, A. Hadjidj, “Secure
and efficient disjoint multipath construction for fault tolerant routing
in wireless sensor networks,” Journal of Network and Computer
Applications 34, 2011, pp. 1380-1397.

[23] Brad Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” In Proc. of International Conference on Mobile
Computing and Networking (Mobicom), 2000, pp. 243-254.

[24] Javier Lopez, Rodrigo Roman, Isaac Agudo, and Carmen Fernandez-
Gago, “Trust management systems for wireless sensor networks: Best
practices,” Computer Communications, Vol 33, 2010, pp.1086 – 1093.

[25] David R. Raymond and Scott F. Midkiff, “Denial-of-Service in Wireless Sensor
Networks: Attacks and Defenses,” Pervasive computing, 2008, pp. 74-80.

[26] Suk-Bok Lee and Yoon-Hwa Choi, “A Resilient Packet-Forwarding
Scheme against Maliciously Packet-Dropping Nodes in Sensor
Networks,” In Proc. of the fourth ACM workshop on Security of ad
hoc and sensor networks (SANS), 2006, pp. 59-69.

[27] Vivek Balachandran and Sabu Emmanuel, “Software Code Obfuscation
by Hiding Control Flow Information in Stack,” IEEE Intl. Workshiop
on Information Forensics and Security (WIFS), 2011, pp. 1-6.

[28] Tang Jiutao and Lin Guoyuan, “Research of Software Protection,”
Intl. Conf. on Educational and network Technology (ICENT), 2010,
pp. 410-413.

141141

