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This paper presents work on automatically characterizing 
typical user activities across multiple sources (or views) of 
data, as well as finding anomalous users who engage in unusual 
combinations of activities across different views of data. This 
approach can be used to detect malicious insiders who may 
abuse their privileged access to systems in order to accomplish 
goals that are detrimental to the organizations that grant those 
privileges. To avoid detection, these malicious insiders want to 
appear as normal as possible with respect to the activities of 
other users with similar privileges and tasks. Therefore, given 
a single type or view of audit data, the activities of the 
malicious insider may appear normal. An anomaly may only 
be apparent when analyzing multiple sources of data. We 
propose and test domain-independent methods that combine 
consensus clustering and anomaly detection techniques. We 
benchmark the efficacy of these methods on simulated insider 
threat data. Experimental results show that combining 
anomaly detection and consensus clustering produces more 
accurate results than sequentially performing the two tasks 
independently. 

Keywords: insider threat, multi-view learning, anomaly detection, 
consensus clustering 

I. INTRODUCTION 
Malicious insiders are users, with legitimate access to a 

system, who abuse their access privileges in order to perform 
tasks that are detrimental to the organization that grants their 
access privileges. Malicious insider activity (including 
various forms of corporate espionage) can be difficult to 
detect. In particular, it may be difficult to fully capture 
insider activity in terms of definable models or rules. Thus, a 
useful tool for detecting potentially malicious insider activity 
is anomaly detection, where one makes the assumption that 
malicious insider activity can be detected as deviations with 
respect to some set of normal activity (e.g., the insider’s 
normal work habits or the work habits of co-workers). 

Certain straightforward anomalies (e.g., sudden, 
excessive printing and/or file transfer activity) can be 
detected using histograms or change detection, particularly if 
the insider is not actively hiding their actions. In the case 
where the malicious insider is trying to appear as innocuous 
as possible in order to avoid detection, the insider’s activities 
may seem normal compared to those of peers when 
analyzing any one data source (or view of the data), while 

those same activities are anomalous when analyzed across 
multiple views of the data. Therefore, more sophisticated 
methods are necessary to detect anomalies that are apparent 
only when these multiple data sources are analyzed in 
concert. This paper describes a type of multi-view anomaly 
detection, where the goal is to find unusual combinations of 
activity across multiple sources of data. 

A basic example of this type of anomaly is as follows. 
From analyzing file accesses of users, we find that users A, 
B, and C access only Resource I, while users D, E, F, and G 
access both Resources I and II. No anomalies can be detected 
from this single view. Analyzing another view representing 
email interactions among users, we find two social network 
clusters: {A,B,C,D} and {E,F,G}. By examining both views, 
it is apparent that user D is anomalous because other users in 
the first social network cluster access only Resource I, while 
user D accesses both resources. In this example, group 
{A,B,C,D} could represent a group of developers working 
on only one particular project I, while group {E,F,G} are 
working on both projects I and II (e.g., in a managerial role). 
Although it is common for users in the second group to 
access files for both projects, user D should not be accessing 
files for project II. It is necessary to combine information 
from both data sources to determine that user D is acting 
strangely with respect to other users.  

An existing method called consensus clustering is able to 
leverage multiple views of the data and decide in which 
cluster each user belongs by summarizing multiple sets of 
cluster labels (e.g., taken from multiple sources of data) into 
a single set of labels. However, this method alone does not 
detect anomalous data points (i.e., users). To the best of our 
knowledge, no other work on finding anomalies of this type 
exists regardless of the domain. 

This paper presents four methods that both identify the 
groups that each user belongs to (i.e., consensus clustering) 
and find any users that do not fit these discovered groups 
(i.e., anomaly detection). The four automated methods 
aggregate and capitalize on multiple sources of data to find 
insiders performing unusual combinations of behavior that 
would appear normal if examined individually. In particular, 
empirical results show that more accurate consensus 
clustering and anomaly detection is achieved by performing 
both tasks in a coupled fashion rather than independently.  
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To support analysis of multi-view data, a previously 
developed framework called Core-Facets is used for 
modeling various sources of audit data for user actions, such 
as file accesses, and storing this information into graph 
structures. The Core-Facets framework is a graph-based data 
warehousing model designed to merge, store, and prepare 
relevant data in the form of graphs [1]. Core-Facets 
facilitates linking heterogeneous data into a single graph 
representation (the core graph) and enables faceting (i.e., 
extraction of purpose-specific views of the core graph) for 
further analysis by graph-based or traditional data-mining 
techniques. In particular, Core-Facets enables the ability to 
store and analyze information from multiple sources of data, 
facilitating the capability to discover unusual combinations 
of activity based on the extracted facet graphs. 

II. RELATED WORK 
There has been extensive work on detecting insider 

threat, including many methods that use automated machine 
learning. Many past approaches have focused on using 
supervised classifiers, including a large body of work on 
masquerade detection, as well as Elicit, which uses Bayesian 
networks [2].  Many approaches have also used various types 
of anomaly detection, including recent work in [3] among 
others. Complementing these existing efforts, this paper 
focuses specifically on detecting a particular type of 
anomalous activity indicative of potentially malicious 
behavior: insiders who use an unusual combination of 
otherwise normal activities to accomplish their malicious 
tasks, particularly when the individual normal activities are 
split across multiple sources of audit data. For example, it 
may be unusual in an organization for a member of an 
engineering group to access a large number of payroll files. 
However, this is only unusual if we know both the user’s 
role and the typical user behaviors of other users fulfilling 
that role.  

Since a user’s role and aggregate user behavior can 
change over time, it is difficult to maintain a list of 
predefined user roles, user tasks, and typical user behaviors 
for those roles and tasks. To address this challenge, these 
characteristics can be determined automatically using 
machine learning methods such as clustering. This problem 
requires a method of detecting unusual combinations of 
cluster memberships across multiple views, which can be 
used to find insiders who exhibit unusual combinations of 
behavior that are not suspicious when examined in isolation. 
As mentioned, no other work on finding anomalies of this 
type exists regardless of the domain. The following sections 
discuss past work on anomaly detection in various domains, 
followed by a discussion of consensus clustering and how 
these two capabilities can be combined. For completeness, 
work related to Core-Facets is also included. 

A. Anomaly Detection 
A large variety of approaches to anomaly detection have 

been proposed [4], including statistics-based approaches that 
assume a particular parametric distribution, one-class 
classifiers, and information-theoretic approaches. The 
anomaly detection problem is ill-posed in the sense that there 

are multiple valid definitions of what makes a particular data 
point unusual or anomalous. Thus, different anomaly 
detection algorithms can be useful for finding different types 
of unusual data points. 

Most anomaly detection approaches assume the data is 
unstructured; that is, each data point is independent from all 
other data points. A number of existing approaches for 
finding anomalies on structured data such as graphs have 
been proposed. One such approach is OddBall [5], which 
finds four specific types of subgraphs centered on individual 
nodes: stars, clique, subgraphs with large weights to 
neighbors, and subgraphs with a “dominant edge” (i.e., one 
of the weights to a neighbor is extremely high). That is, 
OddBall finds subgraphs that are known to be unusual in a 
specific problem domain. 

Another approach to find anomalies in graph-based data 
is to use clusters of subgraphs [6]. In this approach, a hidden 
mixture model is fit to the graph nodes based on node 
attributes. For example, given continuous node attributes, a 
mixture of Gaussians can be fit to the nodes. The hidden 
mixture model variable therefore indicates the “community” 
of a node that can be used to find “community-based 
anomalies” (nodes that are unusual because they link only to 
nodes from different mixtures). Note that this approach is 
one of the few graph-based anomaly detection approaches 
that can handle multiple attributes per node. 

Other recent work includes research which uses a 
minimum description length principle to find anomalies in 
graphs containing the same single subgraph structure 
repeated throughout the graph [7]. In this approach, 
anomalies consist of changes to this subgraph structure. 
Modifications to this approach are likely necessary for 
extremely large graphs, graphs with a high-degree of 
variation in the subgraph structure, or graphs with multiple 
subgraph structures. 

In this paper, we are interested in detecting anomalies 
that can only be identified by examining multiple views of 
the data. In this case, each view is encoded in a separate facet 
graph. There has been much recent work in machine learning 
on multi-view learning, a problem in which there are 
multiple sources of information for each data point. An often 
used example of multi-view learning is learning from video 
data, where the multiple views could include image data or 
text data from the closed captions. There is also recent 
interest in multi-view graph mining (e.g., [8] uses a multi-
view approach to cluster data in a social network graph). 
However, we are unaware of any multi-view anomaly 
detection approaches. 

B. Consensus Clustering 
In machine learning, a clustering algorithm takes a group 

of unlabeled data points as input and creates a set of cluster 
labels. Typically, a single set of cluster labels is a mapping 
from each data point to a group ID, where the goal of most 
clustering algorithms is to give similar data points (for some 
measure of similarity) the same group ID, and to give 
dissimilar data points different group IDs. 

The detection of groups or clusters of nodes in a single 
graph can be automated using existing graph clustering 
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techniques in machine learning. These graph clustering 
algorithms (e.g., METIS [9], GraClus [10]) attempt to find 
balanced clusters of nodes that are highly linked to each 
other, and split nodes that are weakly linked. When applied 
to a single view of data, a clustering algorithm produces a 
cluster label for each data point. 

Given sets of cluster labels from clustering different 
views of data (called a set of “ensemble cluster labels”), a 
common problem is to find a single set of labels (called the 
“consensus cluster labels”) that best characterizes the entire 
dataset across all views. The result of consensus clustering is 
a new consensus cluster label for each data point based on 
the ensemble cluster labels of each data point. An advantage 
of finding a set of consensus cluster labels is robustness, 
since a single clustering on a single view of the data can be 
inaccurate due to noise in the data and/or shortcomings of the 
clustering algorithm itself such as convergence to local 
minima or improper parameter selection.  In particular, many 
algorithms require the number of clusters to be found as 
input, which may be difficult to determine for arbitrary data. 

Formally, the problem definition in consensus clustering 
is as follows. We are given a set of  graphs (each 
representing a single view) and a method of independently 
clustering each graph. Due to non-determinism and 
variations in configuration parameters of the clustering 
algorithm, each of these  graphs (or views) is clustered 

 times, resulting in  sets of ensemble cluster 
labels for the data points (where a data point is a node in 
the graph). Let the  sets of ensemble cluster 
labels be represented by the ensemble cluster label matrix  
with  rows and  columns.  is the cluster 
label of the th data point for the th set of cluster labels (the 
ordering of the cluster labeling in  is arbitrary). Let the set 
of consensus cluster labels be encoded as a vector , where 
the cluster label of the th data point is represented by . 

The goal of consensus clustering is to maximize 
, where  is some evaluation metric. Strehl et al. 

introduces the use of average normalized mutual information 
as the evaluation metric [11]; this evaluation metric is 
discussed in detail in section IV.B. Intuitively, average 
normalized mutual information is high when the groups in 
the consensus cluster labels agree with the groups in each 
column of the ensemble cluster labels. 

Strehl et al. also introduces three methods for consensus 
clustering [11]. Of the three techniques, we found the MCLA 
approach to be most useful, but MCLA typically did not 
perform as well on our benchmark datasets as a technique 
introduced by Topchy et al. [12], who pose the problem of 
consensus clustering as a problem of fitting a mixture of 
multinomial models to the data. This technique can be 
extended to find anomalous points while finding consensus 
cluster labels, and such extensions are described in Section 
IV. 

C. Consensus Clustering and Anomaly Detection 
Data points that are anomalies when considering multiple 

views will give rise to weak consensus; i.e., they will not 
belong definitively to any consensus cluster. To the best of 

our knowledge, no work exists that simultaneously finds 
consensus clusters as well as anomalous data points. The 
closest description in terms of existing approaches would be 
a density-based clustering algorithm that worked on 
categorical data. In density-based clustering, the assumption 
is that only some of the data forms clusters in the form of 
dense regions of data in the feature space, while the 
remaining data is essentially “noise” that falls outside of 
these dense regions. Many approaches for density-based 
clustering exist, including the popular distance-based 
DBSCAN algorithm and various related algorithms [13]. 
However, density-based clustering algorithms are typically 
applied to numerical features for which a distance measure 
such as a Euclidean distance is appropriate.  

D. Graph Processing Frameworks and Scalable Tools 
Graph structures are useful because they are an intuitive 

representation for information characterized by numerous 
relationships, and can model unnormalized, heterogeneous 
data well. Modeling and analyzing data in the form of graphs 
has become prevalent in a growing number of areas, such as 
webmining, social network analysis, and bioinformatics [14]. 
In recent years, research on heterogeneous nodes [15] and 
heterogeneous relationships between nodes [16, 17] shows 
new interest in mining graphs that store a variety of 
information, as opposed to homogeneous graphs with one or 
two types of nodes and edges.  

Although there are many individual efforts focusing on 
graph-based data fusion [18] and graph mining [14], there 
has been little work that offers a comprehensive method for 
managing graph data and preparing the data for analysis. A 
graph database called DEX [18] facilitates the integration of 
multiple data sources into large graphs. However, while 
DEX provides a high-performance graph database to be used 
for exploration and data retrieval, it does not offer different 
customizable views of the graph for analysis.  

To extract views of the graph for multifaceted anomaly 
detection, the Core-Facets graph-based data warehousing 
framework is employed [1]. It uses a graph as the underlying 
model for merged heterogeneous data (enabling use of 
indirect connections across different data sources) and 
faceting to build purpose-specific graph views for analysis. 
The faceting mechanism, in particular, enables new research 
areas such as multi-view data-mining—that is, discovering 
new patterns by viewing the data from multiple different 
perspectives. 

III. CORE-FACETS 
We use the Core-Facets framework to create views from 

multiple sources of data in order to detect potential insider 
threats. The Core-Facets framework builds a heterogeneous 
core graph and uses a technique called faceting to 
dynamically extract data for a variety of analyses. Each node 
or edge in the core graph can have a different set of attributes 
that represent the semantic details of the data. To create a 
particular view of the data, a facet graph is created by 
extracting, filtering, abstracting, and transforming the core 
graph based on the semantics of the data or the graph 
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structure. Multiple facets can then be employed for multi-
view analysis at multiple semantic and temporal scopes. 

 
As shown in Fig. 1, Core-Facets consists of the following 
three phases: 
1. Data Gathering (operational layer) – For each data 

source, a Data Gatherer retrieves desired data as 
specified by the user. The data is then formatted for 
import by the Graph Data Manager in the next phase.  

2. Data Interpretation (data access and metadata layers) – 
The Graph Data Manager applies user-defined import 
and inference rules to the gathered data to build an 
intermediate graph. The rules map data entities to graph 
elements and attributes. The intermediate graph is then 
merged into the Core Graph Database. 

3. Data Preparation (informational access layer) – User-
defined Facet Builders create facet graphs from the core 
graph. The Facet Manager coordinates the interface 
between Facet Builders and the Core Graph Database. 
As shown in Figure 1, multiple facet graphs can be used 
by a multi-view analyzer. 

A. Data Gathering 
Each data source (ranging from a basic log file to a 

complex database) can be regarded as a specific sensor with 
limited scope. For each data source, a Data Gatherer is 
defined to retrieve the data from that source. Using several 
Data Gatherers, data across multiple sources can be linked 
and merged together in the next phase. The data retrieval 
mechanism used by each Data Gatherer may be a basic 
network file transfer or periodic database queries that join 
several database tables. The Data Gatherers also convert the 
data into a common format regardless of the type of data so 
that the next phase can be agnostic to variations in data 
source formats. 

B. Data Interpretation 
The objective of the data interpretation phase is to build 

up the core graph. Gathered data is interpreted by the Graph 
Data Manager, which merges the data into the core graph. A 
domain ontology is required for interpreting the gathered 
data and building the graph as the ontology establishes 
consistent concepts, terminology, and semantic relationships 

among concepts. Based on the ontology, import and 
inference rules map the gathered data to concepts and 
relationships, constituting a graph, which is then merged into 
the Core Graph Database. At the end of this phase, the core 
graph is populated with data from all specified data sources, 
and it is ready to be used.  

C. Data Preparation 
A data analyzer does not typically use all the 

heterogeneous data modeled in the core graph due to the 
data’s inherent complexities, but an analyzer should take 
advantage of the indirect links established by merging data 
from multiple sources. To enable this, faceting is used to 
extract only the data relevant for a given analysis while 
retaining useful indirect relationships among the data. A 
Facet Builder creates a facet graph that captures different 
semantic information as a view required by the analyzer(s). 
A facet graph is created by traversing the core graph and 
performing extraction, abstraction, filtering, and other 
transformations on the nodes and edges of the core graph. 
The Facet Builders interpret the semantics that are encoded 
in the graph as node and edge attributes. Formal semantic 
relationships (defined for the domain) specify hierarchical or 
compositional concepts and other relationships among the 
data to enable data filtering and abstraction.  

Facet Builders can collapse a multi-hop path between 
nodes into a single edge, or collapse a subgraph into a single 
abstracted node to remove irrelevant details (e.g., by 
translating several low-level file modification event data 
points into high-level behavior described as “sending 
emails”). This faceting process is particularly useful in 
preparing input for graph analysis and data mining 
techniques that assume the data is homogeneous. Multi-view 
analyzers that process several facets at one time can use 
different facets to learn new patterns that are not apparent in 
a single facet. Facet graphs are also useful for partitioning 
the data by subgraphs or by time (e.g., a separate graph for 
each week) and for modeling specific semantic topics (e.g., 
process-to-file operations or computer-to-computer file 
transfers) that are relevant to an analyzer. 

IV. MULTIFACETED ANOMALY DETECTION 
As mentioned, in the machine learning literature, a single 

set of cluster labels on a set of data points is a mapping from 
each data point to a group ID. Given a set of ensemble 
cluster labels as input, the goal of a consensus clustering 
algorithm is to find the single set of consensus cluster labels 
that best summarizes the information in the ensemble cluster 
labels. 

This paper presents four methods to find consensus 
cluster labels and anomalous points given ensemble cluster 
labels. The goal of these algorithms is to demonstrate the 
capability to use multiple facet graphs representing different 
views in order to characterize typical behavior and find 
atypical behavior across views, a potentially useful form of 
anomaly detection for insider threat detection. Briefly, the 
four methods are as follows: 

 The Sequential method first performs anomaly detection 
on the independently clustered data points, then  performs 

 
Figure 1: Dataflow Diagram of Core-Facets Framework 
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consensus clustering on the remaining non-anomalous 
data points.  This is used primarily as a baseline method. 

 The Greedy Iterative Removal method repeatedly iterates 
between selection of anomalous data points and 
consensus clustering, where the result of one algorithm 
feeds directly into the other algorithm. 

 The final two methods employ an EM approach that 
performs anomaly detection within the consensus 
clustering algorithm, in effect creating a cluster of 
anomalous points during consensus clustering. 

Formally, the problem definition is as follows. We use 
the same notation as in the formal definition of consensus 
clustering in Section II, with the following additions. Let 

 be the matrix consisting of only the rows of ensemble 
cluster labels  corresponding to data points in , an 
ordered set of data points. Similarly, let  be the vector 
of consensus cluster labels corresponding to data points in . 

The goal of the methods presented in this paper is to find 
both  (a set of  data points consisting of the most 
anomalous data points) and  (a set of  data 
points consisting of the remaining data points) such that 

 is maximized over all 
possible sets , where  is some evaluation metric. 
As in [11], average normalized mutual information is used as 
an evaluation metric. Unfortunately, directly finding the best 
set  is difficult using an exhaustive search due to the 
combinatoric nature of the problem. In the insider threat 
domain, we are particularly interested in whether the  
points in  match known anomalies in benchmark datasets, 
so the capability of algorithms to identify the correct points 
in  is also evaluated. 

Thus, the main difference from the standard consensus 
clustering problem is the discovery of datasets  and 

 in addition to finding a set of consensus cluster 
labels. To the best of our knowledge, this is a new problem 
definition that has never been addressed. 

A. Sequential: Anomaly Detection then Consensus 
Clustering 
The Sequential method performs anomaly detection to 

identify anomalous data points and uses the remaining non-
anomalous data points to determine consensus cluster labels. 
The advantage of this approach is the flexibility of using any 
existing anomaly detection method appropriate for 
categorical data and any existing consensus clustering 
approach. In the current work, a straightforward anomaly 
detector is used to look for the  data points consisting of 
the least frequently occurring combinations of cluster labels 
across views. Other forms of anomaly detection for 
categorical features are possible and are being tested as part 
of ongoing work. 

Once these  data points are removed, consensus cluster 
labels are obtained using existing algorithms. In particular, 
the EM-based approach described in [12] is applied. (The 
graph-based clustering approach MCLA [11] was also tested, 
but we found the EM-based method performed better on our 
benchmark datasets and do not include these additional 
results). 

B. Greedy Iterative Removal 
The Greedy Iterative Removal method iterates between 

selection of anomalies and consensus clustering. On each 
iteration, a single additional data point is declared as 
anomalous and cannot be non-anomalous in subsequent 
iterations. In this method, the anomaly detector is tied to the 
objective function used in consensus clustering, but any 
existing consensus clustering algorithm can be used. As in 
the previous method, the EM method described in [12] is 
used for consensus clustering.  

A more detailed description of this approach and the 
objective function is as follows. Strehl et al. describes an 
information theoretic objective function for measuring the 
quality of consensus cluster labels based on normalized 
mutual information [11]. Let  and  be random variables, 

 be the mutual information between  and , and 
 be the entropy of . Then, the normalized mutual 

information  between  and  is defined as: 

 

In the case of consensus clustering,  and  encode the 
probability that a particular point is in a particular cluster. 
For example, in a particular set of cluster labels  with 

 clusters over  data points, the random variable 
corresponding to  consists of  probabilities, where the 
probability that a point belongs to a particular cluster is 
estimated using maximum likelihood (i.e., the number of 
data points in  with that cluster label divided by the total 
number of data points ). 

The objective function is then the average normalized 
mutual information between the consensus cluster labels  
and each column of . Intuitively, the consensus cluster 
labels that optimize this objective function are the labels that, 
on average, tend to group the same data points together in 
both the overall consensus clustering as well as the clusters 
in each view.  

One can perform consensus clustering and anomaly 
detection in concert in a greedy manner as follows: 

1. Initialization:  is an empty set,  contains 
all data points 

2. Iterate until , where  is a user-supplied 
input on the number of anomalies to find 
a. For all points  in : 

i. Remove  from ; let this set be 
 

ii. Perform consensus cluster labeling using all 
data points in  

iii. Find the value of objective function 
 

iv. Let this objective function value be  
b. Remove data point  with lowest value  from 

; add this data point to  
 
Not surprisingly, this approach can be slow, particularly 

if the number of data points is large and the time complexity 
of the component consensus clustering algorithm is 
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computationally expensive. Methods for speeding up this 
algorithm will be considered in future work. 

C. EM: Multinomial Plus Uniform Distribution  
For the following proposed EM methods, anomaly 

detection occurs within each EM iteration and hence, one 
cannot arbitrarily choose any anomaly detector or consensus 
clustering algorithm. At each iteration, a set of  points is 
flagged as anomalous. Unlike the Greedy Iterative Removal 
method, the set of anomalous data points can change as the 
EM process converges. 

Topchy et al. presents a method of using EM to estimate 
a mixture of  multinomial distributions that will enable 
creation of a set of consensus cluster labels (i.e., the th data 
point belongs to the th cluster in the consensus cluster 
labeling if the th data point has the highest probability of 
belonging to the jth multinomial distribution) [12]. An 
interesting advantage that can be used when estimating 
parameters of a mixture model with EM is that the 
components of the mixture model can be completely 
different probability distributions. That is, one does not need 
to constrain all the components to be modeled by 
multinomial distributions. This idea is used in a number of 
places, such as in [19], which describes methods called 
Bregman bubble clustering.  

In particular, one can combine ideas from [12] and [19] 
as follows. Instead of estimating a mixture of  multinomials 
as in the algorithm in [12], the goal is to estimate parameters 
for  multinomials and a ( )th component consisting of a 
uniform distribution. As motivated in [19], the  points 
with the highest probability of belonging to the ( )th 
distribution can be regarded as noise or anomalies, and 
points with the highest probability of belonging to the 
remaining  multinomials can be considered as points 
belonging to clusters describing normal behavior. Note that 
this is the only method that estimates the value , while the 
other methods take  as an input parameter. 

D. EM: Multinomial Plus Unknown Distribution 
A drawback of the previous approach is that it imposes a 

uniform probability distribution on the ( )th component, 
which represents the anomalous data points. A uniform 
distribution may or may not be an appropriate model. In 
contrast to the previous method, to assign data points to the 
( )th component, this EM method selects the  data 
points that fit the remaining  multinomial components most 
poorly. These  worst-fitting data points correspond to the 
data points with the highest entropy calculated over the 
probabilities of belonging to the  multinomial components. 
Specifically, this EM method reassigns the  worst-fitting 
points to the ( )th component during the M-step (rather 
than calculating fit to a uniform distribution). There is 
nothing to be estimated for the ( )th component during 
the E step, as the prior of the ( )th component is fixed to 

, and  is a user-supplied input parameter. 

E. Discussion 
Note that all of our approaches inherit a number of flaws 

from the approaches on which they are based. We plan to 

address these and other short-comings in future work. In 
particular, the number of clusters (i.e., the number of typical 
groups of behavior) needs to be specified in all proposed 
approaches. Methods to automatically determine the number 
of clusters in consensus clustering have been proposed. 
Integrating these was not an initial priority because, in our 
experiments, even if the incorrect number of clusters in the 
data is provided to the algorithm, the anomalous data points 
can still be found. 

All but one of the methods has a parameter that can 
control , the number of data points considered to be 
anomalous, while the remaining method (EM with uniform 
distribution) automatically discovers . For insider threat, 
both of these approaches are potentially reasonable, and the 
choice of approach depends specifically on the 
characteristics of the environment in which the data is being 
collected. In our experiments, we limit the number of data 
points to be flagged as anomalous to a relatively small 
number (i.e., 5) in order to simulate an environment where 
the number of false positives needs to be low.  

V. EXPERIMENTATION 
In order to test the proposed methods, data with known 

anomalies is needed. Two sets of multi-faceted graph data 
were created that can be processed in the Core-Facets 
framework. The graph data is created using an extension to 
recent work in generating realistically structured graphs. 
Although initial work in graph generation focused on 
relatively small graphs [20], a series of newer work [21, 22] 
has examined issues related to graph generation and 
simulation of large-scale graphs with similar properties to 
extremely large, real datasets. In particular, [21] describes a 
recursive graph generator named “RTG” that is compared 
using eleven metrics to two real datasets.  

RTG is limited to creating either unipartite or bipartite 
single-view graphs. Moreover, RTG may produce several 
disconnected subgraphs, rather than a single connected 
component. In order to create multi-view data with more 
than two types of nodes, a modified version of the RTG 
algorithm was created; this version of RTG is run several 
times for different node types, and all generated graphs are 
merged into a single core graph. This modified version of the 
RTG algorithm includes the capability to remove duplicate 
edges and self-referencing edges, and also includes the 
ability to connect all nodes to the largest connected subgraph 
using preferential attachment.  

In each of the two datasets created for this experiment, 
there are four facets. Each facet contains two groups of 
nodes; in particular, there are a large number of edges 
connecting nodes from the same group, and a small number 
of edges connecting nodes from different groups. Thus, in all 
facet graphs, there exist nodes in the two different groups 
that are connected to nodes in the other group, meaning that 
separation of the nodes into the correct groups is not trivial 
and requires a good graph clustering algorithm. Also note 
that because of the RTG generator, there is a hierarchical 
cluster structure within each group of nodes (i.e., subclusters 
within a cluster). This artifact may cause a clustering 
algorithm to identify the subclusters rather than a single 
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cluster, depending on the parameters specified to the 
algorithm. Finally, there is one anomalous node that is highly 
linked to one group in two of the facets and to the other 
group in the remaining two facets. In total, there are 6340 
nodes per facet and an average of 8155.5 edges per facet in 
the first dataset, and 3550 nodes per facet and an average of 
5667.75 edges per facet in the second dataset. 

The GraClus algorithm [10] was used to cluster each 
facet graph. In particular, since the number of appropriate 
clusters may not be known in practice, each facet was 
clustered into 2, 3, 4, 5, and 6 clusters, resulting in 20 sets of 
cluster labels as input to the algorithms (i.e.,  contains 20 
columns). As mentioned, the number of clusters to create for 
the consensus cluster labels is also uncertain. Thus, the 
experiments use a range of 2, 3, 5, and 10 clusters. 
Empirically, the results show that even if the number of 
target clusters does not match the number of clusters in the 
actual data (i.e., when the number of consensus clusters is 
greater than 2) that the anomalous data points can still be 
found using certain methods. 

A. Evaluation Metrics 
Since the proposed methods rely on EM, which is known 

to be non-deterministic due to randomization during 
initialization, our results are averaged over five runs. To 
evaluate the quality of consensus cluster labels, the averaged 
NMI evaluation metric from [11] is used. Note that past 
studies using non-deterministic consensus clustering 
methods would often run their algorithm multiple times and 
simply keep the method with the highest average NMI. 
However, we found that methods with higher average NMI 
did not necessarily perform better at finding outliers. Thus, 
the results were averaged instead of simply taking the result 
with highest average NMI. 

Since the main goal of this paper is to find unusual 
insider activity, we are primarily concerned with finding the 
correct anomalies in our datasets. Thus, the proposed 
methods were compared by evaluating the percentage of runs 
where the proposed method was able to find the known 
anomaly within the top  anomalous data points, where  
is set to 5 for methods that require  as input. This is 
identical to the recall metric used in information retrieval.  

The results also report the precision of each algorithm, 
which is the percentage of data points that are actually 
anomalous out of all points labeled as anomalous. In our 
datasets, only a single anomaly was injected, so a precision 
of 0.2 is the highest possible precision when  is equal to 5. 
When  is given and the number of true positives is fixed to 
two possible values (one if the anomaly is found, zero 
otherwise), the precision is redundant given the recall. 
However, precision is necessary to examine for those 
methods which automatically determine  in order to 
ensure these methods do not generate too many false 
positives. In particular, results show that the method that 
automatically determines  (EM with uniform distribution) 
tends to be less precise than the best-performing method. 

B. Results 
Results for the graph data are shown in Tables 1 and 2. 

The Greedy Iterative Removal method is always able to find 
the known anomalous node in the top 5 outliers, and is the 
only method that is able to do so in all cases. In particular, 
the Greedy Iterative Removal method is successful even if 
the number of consensus clusters (under table column “# of 
CCs”) is different than the number of clusters in the actual 
dataset.  

 
 

 

Table 2:  Results for graph dataset 2 (Note that due to the 
experimental setup, the max possible precision for all methods 

other than EM: uniform is 0.20.) 

Algorithm # of 
CCs 

Average 
NMI 

Average 
Precision 

Average 
Recall 

Sequential 

2 0.991 0.00 0.00 
3 0.872 0.00 0.00 
5 0.776 0.00 0.00 

10 0.623 0.00 0.00 
 

Greedy Iterative 
Removal 

2 0.994 0.20 1.00 
3 0.910 0.20 1.00 
5 0.731 0.20 1.00 

10 0.647 0.20 1.00 
 

EM: uniform 

2 0.982 0.08 1.00 
3 0.867 0.10 1.00 
5 0.771 0.53 0.80 

10 0.649 0.20 0.20 
 

EM: unknown 

2 0.993 0.20 1.00 
3 0.876 0.00 0.00 
5 0.811 0.00 0.00 

10 0.635 0.00 0.00 
 

Table 1:  Results for graph dataset 1 (Note that due to the 
experimental setup, the max possible precision for all methods 

other than EM: uniform is 0.20.) 

Algorithm # of 
CCs 

Average 
NMI 

Average 
Precision 

Average 
Recall 

Sequential 

2 0.995 0.00 0.00 
3 0.899 0.00 0.00 
5 0.738 0.00 0.00 

10 0.639 0.00 0.00 
 

Greedy Iterative 
Removal 

2 0.996 0.20 1.00 
3 0.847 0.20 1.00 
5 0.710 0.20 1.00 

10 0.642 0.20 1.00 
 

EM: uniform 

2 0.987 0.07 1.00 
3 0.843 0.09 1.00 
5 0.712 0.06 0.60 

10 0.637 0.00 0.00 
 

EM: unknown 

2 0.996 0.20 1.00 
3 0.853 0.00 0.00 
5 0.728 0.00 0.00 

10 0.627 0.00 0.00 
 

123123



The EM with uniform distribution method can work well, 
but doesn’t always catch the known anomalous node (i.e., 
less than perfect recall) and tends to have poorer precision 
than the greedy method. Interestingly, the EM method that 
fits a mixture of multinomials and a single unknown 
distribution does not seem particularly robust and works well 
only when the number of consensus cluster labels matches 
the actual number of clusters in the dataset. Finally, note that 
the Sequential method, which attempts to do anomaly 
detection separately from consensus clustering, never finds 
the correct anomalies. Thus, even if our primary goal is 
anomaly detection, it is beneficial to couple characterization 
of normal and anomalous points when looking for unusual 
combinations of activity. 

It is interesting to note that the methods which result in 
highest averaged NMI do not necessarily result in the best 
precision and recall for finding anomalous data points. Given 
the relatively small percentage of anomalies (i.e., one data 
point out of thousands of data points), it is quite possible to 
achieve very high averaged NMI but find none of the 
anomalies, which happens for the Sequential method in 
many cases. Note that the Greedy Iterative Removal method 
does result in competitive averaged NMI with the methods 
that produce the best averaged NMI, and so seems to be the 
overall best method on the two datasets used in our 
benchmark.  

VI. SUMMARY 
This paper presents methods of finding potentially 

malicious insider activity across multiple data sources. 
Specifically, the objective of the methods is to find unusual 
combinations of otherwise normal activity, where the activity 
of the insider is indistinguishable from activities of normal 
users when examining a single source of data, but the 
combination of activities across data sources is unusual. 
These multiple data sources can be captured as multiple 
facets in a Core-Facets framework. 

Experiments show that simply keeping a histogram of 
group memberships across facets and looking for unusual 
combinations of group memberships (i.e., the Sequential 
method) cannot find anomalous nodes. Instead, one should 
characterize normal behavior in the data while finding 
anomalous data points using extensions to existing methods 
for consensus clustering, even if the primary goal is to find 
anomalous data points. In our test datasets, the Greedy 
Iterative Removal method performed well at finding the 
anomalous insider activity. Future work will focus on further 
testing this approach, particularly on additional datasets, as 
well as improving the efficiency and capabilities of the 
proposed approaches. In particular, the ability of the methods 
to rank anomalies in addition to identifying a point as 
anomalous should be considered. 
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