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Abstract—Physical Unclonable Functions (PUFs) or
Physical One Way Functions (P-OWFs) are physical
systems whose responses to input stimuli are easy to
measure but hard to clone. The unclonability property
is due to the accepted hardness of replicating the mul-
titude of uncontrollable manufacturing characteristics
and makes PUFs useful in solving problems such as
device authentication, software protection and licensing,
and certified execution. In this paper, we investigate the
effectiveness of PUFs for software protection in hostile
offline settings.

We show that traditional non-computational (black-
box) PUFs cannot solve the software protection problem
in this context. We provide two real-world adversary
models (weak and strong variants) and security def-
initions for each. We propose schemes secure against
the weak adversary and show that no scheme is secure
against a strong adversary without the use of trusted
hardware. Finally, we present a protection scheme secure
against strong adversaries based on trusted hardware.

Keywords-physical unclonable functions, PUFs, phys-
ical one-way functions, software protection, intellectual
property protection

I. INTRODUCTION

Physical Unclonable Functions (PUFs) or Physical

One Way Functions (P-OWFs) are physical systems

whose responses to input stimuli are easy to measure,

within reasonable error bounds, but hard to clone.

In essence, PUFs hide their secrets in circuit char-

acteristics rather than in digitized form. On different

input stimuli (challenges) a PUF circuit exposes certain

measurable and persistent characteristics (responses).

The unclonability property comes from the accepted

hardness of replicating the multitude of uncontrol-

lable manufacturing characteristics. Several varieties of

PUFs have been proposed since being introduced by

Pappu in [1] and range from optical PUFs [1], [2] to

silicon timing PUFs [3], [4].

Although initially envisaged as a new device iden-

tification and authentication tool, the attractiveness of

PUF unclonability has greatly broadened the scope of

possible applications. Current and emerging applica-

tions include software protection and licensing [5]–[7],

hardware tamper proofing [8], [9], and certified execu-

tion [10], [11]. However, the problem with the largest

commercial impact is software protection. Software

piracy costs the software industry billions of dollars

annually in lost revenue.

Protecting software in offline scenarios is extremely

challenging because of malicious hosts. Malicious

hosts have complete control, access, and visibility, over

all software they execute. This makes for an extremely

powerful adversary and explains why most approaches

fail to protect software from illegal tampering and

duplication. The main security issue with using PUFs

in this hostile context is dealing with PUF replay

and virtualization attacks [6] – also referred to as

OORE (Observe Once, Run Everywhere) attacks. Only

well designed schemes based on trusted devices (e.g.,

trusted hardware or servers) can have any success.

This raises interesting research questions: Is it possible

to use PUF technologies to build secure software

protection schemes? What would such schemes look

like?

A. Contributions

In this paper, we seek to answer the above questions

by investigating the effectiveness of PUFs for software

protection from a theoretical standpoint. While the for-

malization may seem verbose, it allows us to study the

fundamental behavior of PUFs and to draw conclusions

independent of specific implementations. Furthermore,
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the framework we present, as we argue later, is not far

from reality.

Our main contribution is showing that traditional

(black-box) PUFs cannot solve the software protection

problem in offline settings. Traditional PUFs are de-

fined as devices that do not perform any computation,

but behave solely as black box functions, i.e., given a

challenge as input, output an unpredictable but consis-

tently repeatable response.

We also contribute two real-world adversary models

(weak and strong variants) and present definitions

for security against each adversary. We continue by

proposing schemes secure against the weak adversary

and show that no scheme is secure against a strong

adversary without the use of trusted hardware. Finally,

we propose a protection scheme secure against strong

adversaries based on trusted hardware.

B. Related Work

The first work geared towards the anti-piracy and

software protection problem was in 1980 by Kent [12].

Kent suggested the use of tamper resistant trusted

hardware and encrypted programs and was the first to

differentiate the trusted host problem from the trusted

code problem. Gosler [13] proposed the use of dongles

and magnetic signatures in floppy drives along with

several anti-debugging techniques to prevent software

analysis and copying. Unfortunately, these early works

are vulnerable to OORE attacks.

Cohen [14] proposed a solution using software di-

versity and code obfuscation as a software protection

mechanism. Cohen’s methods were based on simple

code transformation and obfuscation techniques. Ad-

ditional techniques were later proposed by Collberg

et al [15] and Wang [16]. Finally, Goldreich and

Ostrovsky provided the first theoretical analysis and

foundation to the software protection problem [17].

The basic approach hides/obfuscates data access pat-

terns in conjunction with trusted hardware to prevent

illegal software replication.

More recently, Boaz Barak et al [18] completed a

theoretical analysis of software obfuscation techniques.

Their contribution was an interesting negative result

that implied, in its most extreme interpretation, that

there does not exist a provably secure obfuscation

algorithm that works on all possible programs. Taking

a new approach, Chang and Atallah [19] proposed

a scheme that prevented software tampering using a

set of inter-connected (code) guards programmed to

perform code verification and repairs.

The advent of PUFs has led to several proposals for

their use in software protection. Most notably, Gua-

jardo et al. [5], proposed an FPGA based intellectual

property protection scheme that relied on SRAM PUFs.

However, SRAM PUFs are not ideal due to the possi-

bility of an exhaustive read out attack. Atallah et al. [6]

proposed inter-twining software functionality directly

with the PUF. However, their approach requires trusted

hardware for remote initialization and only protects

software with algebraic group functionality.

C. Organization

The remainder of this paper is organized as follows:

Section II explains the software protection problem

and reviews the concepts needed to understand this

paper: PUFs, Turing Machines (TMs), and Control

Flow Graphs (CFGs). In Section III we introduce a

weak adversary (W-ADV) model along with a software

protection scheme secure against this adversary. Sec-

tion IV extends the previous model to capture a strong

adversary (S-ADV) and argues why trusted hardware

is required to protect against such adversaries. We then

present a software protection scheme based on trusted

hardware secure against a S-ADV. Section V, presents

future directions for research and motivates the need

to rethink current approaches to software protection.

Finally, we summarize our conclusions in Section VI.

II. THE SOFTWARE PROTECTION PROBLEM

To properly tackle the software protection problem,

it is important to accurately define the problem and any

solution requirements. We re-iterate that rather than

protecting software from trademark or copyright vio-

lations (i.e., software fingerprinting and watermarking)

we aim to protect software from illegal execution and

duplication.

In our model, the adversary’s goal is to create

a duplicate program with identical functionality. At

first glance this seems unrealistic – in most practical

situations it is sufficient for a duplicated program to

have similar or partial behavior. It is common to see

pirated software that only supports a subset of features

or that only occasionally crashes.

However, if we can devise a generic method capable

of protecting small code block sizes, then this method
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can be extended to larger programs with several pro-

tected “features”. In the ideal situation, it should be

difficult for an adversary to identify a specific feature

and remove it without affecting other features, i.e.,

duplication of all but one feature is also difficult.

We now review theoretical preliminaries and answer

the questions: (1) What powers do real-world adver-

saries have? (2) How do we protect software against

real-world adversaries without using trusted hardware

or online trusted third parties?

A. Preliminaries

Formal PUF Definition: Although the formal defini-

tion of a PUF has been under debate recently [20]–[23],

we define a PUF as follows:

Definition 1. A Physical Unclonable Function is a
physical system with the following properties:
• (Persistent and Unpredictable) The response (Ri)

to some challenge (Ci) is random, yet persistent
over multiple observations.

• (Unclonable) Given a PUF (PUF ′), it is infea-
sible for an adversary to build another system
(PUF ′′) – real or virtual – that provides the same
responses to every possible challenge.

• (Tamper Evident) Invasive attacks on the PUF es-
sentially destroy them and render them ineffective.

It is important to note that a randomness property is

not explicitly required since the notion of unclonability

supersedes the notion of randomness – i.e., for a

hardware device to be unclonable, it must possess

randomness. We acknowledge that the above definition

does not capture the notion of noise in PUF responses

(as in [23]). The effect of noise on persistence can be

captured by introducing a threshold parameter (α) and

require that the response to some challenge occurs with

a probability of at least α (after error correction). In

this paper, we do not address noisy PUF responses,

but assume interaction with a PUF with a threshold

parameter α = 1.

Programs as Turing Machines: A Turing Machine
(TM) consists of a finite control, at least one infinite

tape divided into cells, and a read and/or write head

on each of the tapes. The finite control may be in

one of many (but finite) number of states (Q). Each

cell on the tape may contain one symbol from the

alphabet of the machine (Σ), or a blank symbol (B).

The tape head is capable of moving either left (L) or

right (R) from each cell. The TM begins in an initial
state – q0 and halts at a halting state – qh. The state

transition function (δ) determines how the machine

changes state. The set of all inputs to the machine M
that cause it to reach qh is called its language L(M). In

our study of programs, we do not distinguish between

(1) recursive and recursively enumerable languages

or (2) deterministic and non-deterministic TMs. In

general, a TM is assumed to be as powerful as a real

machine and can execute any program that a computing

device can. This allows us to safely assume that there

exists a TM for every computer program P.

Equivalence of Turing Machines: We say that two

TMs M and M′ are equivalent (denoted M ≡ M′) if

∀x,M(x) = M′(x) – i.e., the functions computed by the

two machines are identical on every input x. These two

machines may have a different set of states and may

also work with different state transition relations.

Unfortunately, it is not always possible to confirm

complete equivalence since the language of a machine

|L(M)| may be infinite. For this reason, we cannot

require strict equivalence and assume that the input

set size is finite and covers all features of the program.

Throughout this paper we use the terms program
and machine (and notations M and P) interchangeably.

Control Flow Graphs: A control flow graph (CFG)

is a directed graph that denotes all execution paths

traversed by a program during execution. The exact

paths taken are usually dependent on user input and/or

branching conditions. Each node in the graph repre-

sents a linear block of code and each edge denotes the

flow of control from one block to the next. Control

flow graphs have two standard nodes: an entry node

and an exit node. The entry node typically includes

all instructions required for setting up the program

execution environment, global declarations, etc. The

exit block is where all execution halts – analogous to

a TM halting state. When this block is reached we say

that the program is complete.

Note that the control flow graph of a program is

an alternative visualization of the TM state transition

diagram it represents.

III. FORMALIZING THE WEAK ADVERSARY

(W-ADV)

This model captures the scenario in which an ad-

versary does not have access to the legitimate PUF.

A real-world analogue is an adversary who makes an
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Table I
SUMMARY OF NOTATION IN SECTION III

Notation Definition

IPP Intellectual Property Protection scheme

A (or) ADV A polynomially (time) bounded adver-
sary

n Security parameter determining the
number of PUF challenges inserted in
a program

p(·) A positive polynomial function

WADVA,IPP(n) The output of the WADV game with A,
IPP, n as inputs.

E[TWADVA,IPP(n) = 1] Expected number of trials of the
WADV game before WADVA,IPP(n) =
1.

N Number of blocks in a program

bi Integer label of block i
f (R(C)) Function f applied to R(C)
CFG(P) The control flow graph representing

program P

exact duplicate of software to install and execute on

its local systems.

A. PUF IP-Protection in the presence of a W-ADV

Consider the following experiment, defined for any

PUF Intellectual Property-Protection (IPP) scheme,

any adversary A, and any security parameter n (which

determines the number of PUF challenges inserted in

the output of IPP):

The W-ADV Experiment (WADVA,IPP(n)):
1) The IPP oracle picks at random two strings

(that represent the Turing machines M and PUF)

and produces the string M′ embedded with n
PUF challenges which is of length p(|M|), for

some polynomial p(·). We denote an embedded

challenge C as C ∈M′.
2) The adversary A is given as input n and the string

of the machine M′.
3) The adversary A outputs a string M′′.
4) The experiment output is defined to be 1 if:

∀x ∈ L(M), [M′′(x) = M′(x)] and
[�C ∈M′′ s.t R(C) is unknown]

Otherwise the output is 0. We say that A suc-

ceeded if WADVA,IPP(n) = 1.

The adversary wins the experiment if M′′ has the

same functionality as M′ and M′′ has no PUF chal-

lenges in it whose responses (or function of responses)

have not been guessed by the adversary. Note that

this definition allows for M′′ to contain zero PUF

challenges, i.e., have been removed by the adversary.

It may seem odd to model “unclonable” PUFs

as random strings that are inherently clonable.

However, we justify this decision by arguing that a

deterministic challenge/response PUF can be viewed

as an exponentially large lookup table. An adversary

with a polynomial amount of storage space cannot

duplicate the PUF string in its entirety. i.e., it is

impossible for an adversary to perform a read-out

attack and virtualize the entire domain space of the

PUF.

Let E[TWADVA,IPP(n) = 1] be the expected number of

trials required by adversary A before winning the game,

where a trial is a single execution of M′ for some x of

the adversary’s choosing.

Definition 2. A PUF IP-Protection scheme IPP is said
to be ε-secure in the presence of a W-ADV (or, W-

ADV ε-Secure) if for all probabilistic polynomial time
adversaries A there exists an ε exponential in the size
of the program, such that:

E[TWADVA,IPP(n) = 1]≥ ε (1)

where n is the number of PUF challenges inserted in
M′ and the probability is taken over the random coins
used by A, as well as the random coins used in the
experiment (for choosing PUF challenges).

B. Formal Requirements of a W-ADV Secure IPP
Scheme

Based on the definitions in Section III-A, we now

formally enumerate the requirements of a W-ADV

secure IPP scheme:

(protected functionality) The protected program P′
must have the same functionality as the original pro-

gram P. This requirement can be formalized as follows:

If P is represented by the Turing machine M and P′
is represented by the Turing machine M′ then:

∀x ∈ L(M),M(x) = M′(x) (2)

Further, the program P′ must be protected such that

correct execution only occurs on a system with the

attached PUF , i.e., for every embedded challenge C ∈
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P′, the response R′(C) must be the expected response

for that challenge. This requirement is essentially an

if and only if pre-cursor to the above functionality

requirement:

∀x ∈ L(M),∀C ∈M′,M(x) = M′(x)
iff R(C) = R′(C)

(3)

(non-trivial inversion) There does not exist a polyno-

mial time algorithm ADV such that, ADV(M’) → M. It

should be hard for an adversary to create a functionally

equivalent piece of software that does not perform all

original PUF queries. This can be formalized as:

∀ADV,Pr[ADV (M′) = M′′ s.t M′′ ≡M

and |C ∈M′′|< n]≤ 1

p(|M|)
(4)

C. W-ADV Secure IPP Scheme Based on Control Flow
Graphs

Let P and PUF be the inputs to the IPP scheme,

where P is the program to be protected and PUF the

PUF oracle required for correct execution. Let G be

the control flow graph of program P where each node

represents a block of code. The size of each code

block is dependent on the security parameter n in the

following way: Let N ≥ 	|P|n 
 and assign each code

block an integer label: {b1, ...,bN}.
Construction 1. The following construction causes the
N node control flow graph G to be identified only when
the PUF responses to challenges are correct. Given
an incorrect PUF, the control flow graph resembles a
complete graph with N nodes.

1) At the exit point of every block bi, a challenge is
inserted by the vendor as follows:

a) If the original control flow graph G of the
program P contains an edge from node
bi to b j, then pick challenge Ci such that
f (R(Ci)) equals the integer label of b j.

b) The challenge is inserted as an uncon-
ditional branching statement, e.g., goto

f (R(Ci)), or as part of an existing condi-
tional branching statement, e.g.,

if (a == b) then goto f (R(Ci)).

2) The above procedure is repeated for every edge
in the original control flow graph G.

Properties and Security: The resulting program P′
has the following properties:

(non-trivial inversion: complete CFG in the
presence of a W-ADV) The CFG of P′ appears to be

a complete graph because at the exit point of a given

block the adversary is unaware of the correct f (R(Ci))
value and cannot do significantly better than guessing.

Thus, each of the remaining N− 1 blocks is equally

valid as the next node in the CFG. This creates edges

between all possible blocks and forces the adversary

to guess the next block – a correct guess occurs with

probability 1
N−1 for each block.

(protected functionality: correct CFG in the
presence of PUF) In the presence of the PUF oracle,

the program P′ and its control flow graph G′ have the

same functionality and structure as the program P and

its graph G, respectively. This is because the correct

response f (R(Ci)) is given for every challenge Ci in

block bi with probability equal to 1.

An example of the difference in the control flow

graph of P′ with and without the correct PUF oracle

is illustrated in Figure 1.

Figure 1. Example CFG(P′) on PUF → CFG(P′) on PUF ′

Theorem 1. Construction 1 is W-ADV Secure.

Proof: To show that Construction 1 is W-ADV
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secure according to Definition 2, we must show that

the expected number of trials before an adversary may

win the W-ADV experiment is at least exponential

in N. We know that the probability of an adversary

correctly guessing the next block to enter from block

bi is 1
N−1 (if we assume no loops, allowing loops only

makes our case stronger). The probability of correctly

guessing a single path of length m is 1
(N−1)m . However,

since the number of paths (and path lengths) in P′ are

unknown to the adversary, an exhaustive search over all

N blocks is required to discover all possible paths. The

probability of N consecutive correct guesses for the

values of f (R(Ci)) is 1
(n−1)n . Therefore, the expected

number of trials before the adversary is able to guess

all f (R(Ci)) correctly is (N−1)N .

Limitations: While our scheme is theoretically se-

cure, it does suffer from what we call a reality shock.

In the real world, it is likely that a program will crash

if control is randomly transferred from one block to

another. If this behavior occurs with high probability

(≈ 1), an adversary can reconstruct the correct control

flow in O(N2) trials. However, methods exist to prevent

crashing on unexpected control flow, such as, global

variable declarations, choosing very fine grained block

granularity, etc.

Furthermore, the deterministic PUF responses in the

above construction make it possible to create a P′
given access to the real PUF oracle using the attack

described in Section IV-B. In the following section, we

show how to convert the above scheme into one that is

secure against a strong adversary using cryptographic

primitives and a trusted computing board. We also

illustrate reasons for why we believe it is impossible

to achieve security against a strong adversary without

a trusted computing board.

IV. FORMALIZING THE STRONG ADVERSARY

(S-ADV)

This model captures the scenario in which an ad-

versary has limited time access to the legitimate PUF

oracle. In the real world, this would be an adversary

that buys a single software license, studies the software

and PUF interactions, and attempts to create a cracked

version to distribute to multiple systems.

Table II
SUMMARY OF NOTATION IN SECTION IV

Notation Definition

p(·), p′(·) Positive polynomial functions

SADVA,IPP(n) The output of the SADV game with A,
IPP, n as inputs.

E[TSADVA,IPP(n) = 1] Expected number of trials of the SADV
game before SADVA,IPP(n) = 1.

PT My A probabilistic Turing machine with
random tape set to string y.

PT My(x) A PT M with input x and the random
tape set to y.

L(PT My) The language of PT My.

Fk(·) A strong pseudo-random permutation
with key k.

F j
k (x) Fk(·) applied j times on input x.

A. PUF IP-Protection in the presence of a S-ADV

The basic idea behind a S-ADV is that the adversary

is allowed to adaptively query the PUF oracle used by

the IPP algorithm. This is formalized by allowing A
to interact freely with the PUF oracle as a black-box

that returns responses (or functions of responses) to

challenges issued by A. The following experiment is

defined for any PUF IP-Protection scheme IPP, any

adversary A, and any security parameter n (number of

PUF challenges inserted in the output of IPP).

The S-ADV Experiment (SADVA,IPP(n)):
1) The IPP oracle picks at random two strings

(that represent the Turing machines M and PUF)

and produces the string M′ embedded with n
PUF challenges which is of length p(|M|), for

some polynomial p(·). We denote an embedded

challenge C as C ∈M′.
2) The adversary A is given as input n, access to

O f (PUF), and the string of the machine M′.
3) The adversary A continues to have oracle access

to the machine PUF . It then outputs a string M′′.
Let C′ be the set of all queries sent to the PUF

oracle O f (PUF).

4) The experiment output is defined to be 1 if:

∀x ∈ L(M), [M′′(x) = M′(x)] and

[�C ∈M′′ s.t. f (R(C)) is unknown]

Otherwise, the output is 0. We say that A suc-

ceeded if SADVA,IPP(n) = 1.

The adversary wins the experiment if M′′ has the

same functionality as M′ and if M′′ has no PUF
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challenges in it whose responses (or function of

responses) have not been guessed or learned from the

PUF oracle. Note that this allows for M′′ to contain

zero PUF challenges, i.e., have been removed by the

adversary.

Let E[TSADVA,IPP(n) = 1] be the expected number of

trials required by adversary A before winning the the

game (i.e., before SADVA,IPP(n) = 1).

Definition 3. A PUF IP-Protection scheme IPP is said
to be ε-secure in the presence of a S-ADV (or, S-

ADV ε-Secure) if for all probabilistic polynomial time
adversaries A there exists an ε exponential in the size
of the program, such that:

E[TSADVA,IPP(n) = 1]≥ ε (5)

where n is the number of PUF challenges inserted in
M′ and the probability is taken over the random coins
used by A, as well as the random coins used in the
experiment (for choosing PUF challenges).

Clearly, if an IPP scheme is secure against a S-ADV,

it is also secure against a W-ADV. This holds because

the WADV experiment is a special case of the SADV

experiment in which the adversary A does not access

the PUF oracle at all.

B. Discussion

At first sight, it appears that security against a S-

ADV is impossible to achieve. In particular, consider

an adversary that gets as input a program P′. Since

the adversary has oracle access to O f (PUF), it can

request responses (or a function of the responses) for

all challenges in P′. This makes it possible to create

P′′ by simply replaying the recorded responses. Such

an attack easily breaks the protection provided by IPP,

since Equation 5 is now:

E[TSADVA,IPP(n) = 1] = 1 (6)

We conclude that no IPP scheme can be secure

against an S-ADV if the PUF challenges in P′ are

deterministic. Avoiding this issue requires: (1) PUF re-

sponses that are not dependent solely on the challenge,

or (2) non-deterministic PUF challenges. However, the

first method violates our assumption that a PUF is a

non-computational (black-box) device.

C. Strong Adversarial Approaches

In general, an S-ADV A may take one of the

following two approaches in order to create a cracked

version P′′ of a protected program P′.
1) A may execute the program for a given input

on the legitimate PUF and observe the log of

executed blocks. He can then removes all in-

stances of the PUF challenges. This essentially

creates the cracked version P′′ for the single

execution path that was reached with the supplied

input. Here, the difficulty of creating the crack is

expressed in terms of the number of paths present

in the state transition diagram of the machine P′.
2) A may instead scan the program P′ and store

every challenge embedded in it. The responses to

each of these challenges are then stored in a table

of (C,R) pairs – thereby, virtualizing the use f ul
part of the PUF. Here, the difficulty of creating

the crack is expressed in terms of the probability

of the adversary guessing correctly all responses

to challenges presented by the software.

Based on the above two approaches, the lower bound

on the number of iterations required by the adversary

to create a cracked version of the software is the

minimum between the number paths in P and the num-

ber of iterations required for guessing or learning all

correct PUF responses. We point out that the number

of paths in the control flow graph of the protected

program P′ (or, in the state transition diagram for

M′) is controlled by the software developer. Various

programming techniques, such as, obfuscation, can

increase CFG branching factor but are beyond the

scope of our paper. Instead, we focus on maximizing

the number of iterations required before an adversary

correctly guesses all responses to the challenges in P′.

D. An Impossibility Conjecture

We now argue why it is impossible to build a S-ADV

secure IPP scheme without using trusted hardware for

secure storage and/or processing. We first present an

informal argument to show intuitively why we believe

this to be true. Our arguments are also applicable

to software obfuscation, whitebox cryptography, and

software watermarking.

Conjecture 1. There cannot exist a S-ADV secure IPP
scheme in offline settings without trusted hardware.
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Reasoning. It is clear from the above requirements

that there needs to be some type of randomness in-

volved in the selection of challenges. We now set up

our program P′ as a probabilistic Turing machine PT M
which behaves like an ordinary deterministic Turing

machine except that (1) multiple state transitions may

exist for entries in the state transition function, and (2)

transitions are made based on probabilities determined

by a random tape R which consists of a binary string

of random bits.

We say that x ∈ L(PT My) if PT My(x) halts and

accepts. Here, y represents the bits on the random tape.

For our machine PT M, the input tape is write enabled

and consists of bits that determine the computation path

and responses to challenges issued by the transition

function. The transition function, at each challenge

stage, may select one of a large finite number of

challenges based on the string of bits y in the random

tape R. At the verify response stage, the transition

function may make a state transition based on the

response received to the issued challenge. Any input x
that requests a valid computation and contains correct

responses to all challenges issued by the transition

function will result in a halt and accept state.

A fundamental requirement for all probabilistic Tur-

ing machines is that the random tape R be read-only
(i.e., it is not write enabled). However, it is impossible

to enforce this requirement in the purely offline setting

without trusted hardware – every tape is write-enabled.

Since the random tape is write enabled, an adversary

may rewrite the tape with the bits y to enforce a certain

set of challenges on every iteration of PT M. The end

result is a deterministic Turing machine T M(x) rather

than the desired probabilistic machine PT My(x). This

enables the adversary to launch the attack described in

Section IV-B and win the S-ADV experiment after just

a single trial.

E. A S-ADV Secure Scheme Using Trusted Hardware

Let P and PUF be the inputs to the IPP scheme,

where P is the program to be protected and PUF is

the PUF required for correct execution. Let G be the

control flow graph of the program P where each node

represents a block of code. As before, code block size

is bounded by the security parameter n in the following

way: Let N ≥	|P|n 
 with each block assigned an integer

label: {b1, ...,bN} ∈ {1, ...,N}. We assume the trusted

hardware can store O(N logN) bits in secure memory

(for the entire lifetime of the program) and can perform

strong pseudo-random permutation operations (s-PRP).

Strong Pseudo Random Permutations: A function

F :{0,1}l×{0,1}l →{0,1}l is a keyed s-PRP if:

• For every k, Fk(·) is a one-to-one function.

• Given k,x there exist efficient functions for com-

puting Fk(x) and its inverse F−1
k (x).

• An adversary with access to the inverse function

oracle cannot distinguish between Fk(·) and a

randomly chosen permutation.

We build our IPP scheme based on the assumption

that strong pseudo random permutations exist –

a conjecture widely believed to be true. In our

construction, the key k for the s-PRP Fk(·) is stored

in secure memory.

IPP-Program State: The IPP-Program State is ini-

tialized to {b1, ...,bN}. After the jth execution, the state

is updated to {F( j)
k (b1), ...,F

( j)
k (bN)} where Fk is a

keyed s-PRP function. We say that the value F( j)
k (bi)

is the label assigned to the block bi in the jth iteration.

IPP-PRP Tables: In the secure memory provided by

the trusted hardware, a 3-tuple-N-record table (called

the IPP-PRP Table) is stored. There is a record for

every block in P containing the following fields:

• Block Index: The index of a block i is the initial

label bi assigned to it. This tuple is the primary

key to the PRP-IPP table and does not change

during the entire lifetime of the program P′.

• PRP Index: The PRP index of a block i is the

label assigned to it by the IPP-Program state

described above. The value is unique for each

block, however it changes on each iteration in

accordance with the IPP-Program state.

• Challenge Set: The challenge set for a block i
is a large but finite set of challenges that have

the following property: for every challenge in the

challenge set, f (R(C)) = F( j)
k (bi). Notice that the

input and output domains of the function Fk(·) are

the same, therefore, only n challenge sets need to

be collected by the vendor of P′. The set, as with

the PRP index also changes with every update of

the IPP-Program state.
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Construction 2. Our construction causes the N node
control flow graph G to be identified only when the
PUF responses to challenges are correct. Given an
incorrect PUF, the control flow graph resembles an
N node complete graph. Note that this construction
illustrates only one instance of the program. The blocks
of the program are relabeled on each iteration (or
instance), as required by the software vendor. The same
construction applies after relabeling.

1) At the exit point of every block with block index

– bi, challenges are inserted by the vendor as
follows:

a) If the control flow graph G of the program
P contains an edge from a block with
index bi to a block with index b j, then a
challenge C is selected at random from the
challenge set in the record that contains b j
as the block index. Providing the expected
response to this challenge transfers control
to the correct block in the re-labeled control
flow graph.

b) The challenge is inserted as: (1) an un-
conditional branching statement, e.g., goto

f (R(C)), or (2) part of an existing condi-
tional branching statement, e.g.,

if (a == b) then goto f (R(C)) else goto

f (R(C′)).
2) The above procedure is repeated for every edge

in the control flow graph G.

Original CFG

b(1)(1)

b(2)(2)

b(4)(4) b(5)(5)

b(3)(3)

b(6)(6)

Relabeled CFG

b(1)(4)

b(2)(5)

b(4)(2) b(5)(6)

b(3)(3)

b(6)(1)

Figure 2. (example) Initial CFG on iteration 0 → Relabeled CFG
on iteration 1. The value in the first parenthesis is the block index,
the second is the PRP index. The exit point of each block contains
a challenge C such that f (R(C)) == PRP index(b j).

Properties and Security

(non-trivial inversion: complete CFG in the
presence of a S-ADV) The control flow graph of the

program P′ appears as a complete graph because: On

a new instance of the program (due to relabeling of

nodes in the control flow graph), at the exit point

of a given block, the adversary is unaware of the

correct (re-labeled) value of f (R(Ci)) and cannot do

significantly better than guessing its value. Correctly

guessing the next block occurs with probability 1
N−1 .

(protected functionality: correct CFG in the pres-
ence of PUF) In the presence of PUF , the program

P′ and its control flow graph G′ have the same func-

tionality and structure as the program P and its graph

G, respectively. This is because the correct response

f (R(Ci)) is given for every challenge Ci in block bi
with probability equal to 1.

Theorem 2. Construction 2 is S-ADV Secure

Proof: To show that Construction 2 is S-ADV

secure, according to Definition 3, we must show that

the expected number of trials before an adversary may

win the S-ADV experiment is at least exponential in

N. If FK(·) is a strong pseudo random permutation, on

a new program instance, we know that the probability

of an adversary correctly guessing the label of the next

block to enter from block bi is 1
N−1 (if we assume no

loops, allowing loops only makes our case stronger).

There are N blocks, therefore the probability of N
consecutive correct guesses for the values of f (R(Ci))
is 1

(N−1)N . Therefore, the expected number of trials

before the adversary is able to guess all f (R(Ci))s
correctly is (N−1)N .

Discussion: Challenge Set Size vs. Security The

size of each challenge set directly corresponds to the

number of iterations an adversary must run (on a

particular path of the control flow graph) before being

able to use the protected software on a virtualized PUF.
Therefore, the challenge set size must be large

enough to prevent brute-force attacks by the adversary.

This can also be enforced by ensuring that licenses are

tied to specific number of uses rather than unlimited

use. After each use (i.e., instantiation) of the program,

the challenge entry of the challenge set is deleted.

Eventually, the number of entries for some challenge

set will reach null, causing the program to terminate

abruptly. At this point, the user will be required to
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request more challenge sets from the software vendor.

The size of the challenge set and per-usage licenses

are an important security parameter/policy left in the

hands of software vendors.

V. RETHINKING THE SOFTWARE PROTECTION

PROBLEM

Section IV-D argues why it is impossible to achieve

security against a S-ADV without a trusted entity (e.g.,

trusted hardware or online server). Unfortunately, this

does not meet our original goal of finding a feasible

offline solution without additional trusted hardware.

This requires that we re-analyze the software protection

problem and explain why traditional (i.e., black-box)

PUFs and traditional models of computing (i.e., Turing

machines and RAM) fail to provide a solution to the

software protection problem.

A. Failure of Traditional PUFs

The main reason for the failure of traditional PUFs

is the impossibility of supplying random challenges

to the PUF from a deterministic program. Further,

the PUF is only a peripheral device connected to

the device executing the program via some bus, and

in the hostile environment (modeled by the S-ADV),

any information flow through the bus is known and

monitored by the adversary. This allows an adversary

to easily replicate/virtualize the PUF and makes them

unusable against the S-ADV.

This leads us to recognize the need for a PUF which

is intrinsically involved in the actual computation

performed by the program, e.g., a processor that

exhibits certain timing characteristics. We call such

PUFs intrinsic and personal. Intrinsic because they

are inherently involved in the execution of the

software and personal because every computing

device possesses such a PUF.

Intrinsic Personal PUFs (IP-PUFs) are PUFs that
are intrinsically and continuously involved in the
computation of the program to be protected.

B. Failure of Traditional Computing Models

Unfortunately, traditional Turing machines or RAM

computing models are not useful with the software

protection problem because intrinsic features and ran-

domness (such as timing delays and bit errors) cannot

be sufficiently modeled. Any future attempts to find

a purely PUF based solution to the offline protection

problem should rely on a systems oriented toolkit.

VI. CONCLUSIONS AND FUTURE WORK

PUFs have been envisioned as being applicable to

practical problems, such as, hardware authentication,

certified execution, and most notably software protec-

tion. However, current approaches attempting to use

PUFs for offline hardware authentication and software

protection are vulnerable to virtualization attacks

We believe that using IP-PUFs can reduce such

attacks significantly by continuously authenticating

the device implicitly and transparently. Further, this

method of authentication is useful for software protec-

tion by intertwining software and a computing device

(e.g., by inserting race conditions that resolve correctly

only on the correct device). This approach makes

it increasingly difficult for an adversary to unhook

software functionality from the PUF. The development

of such a PUF is the logical culmination for this project

and will be part of our future work.

In conclusion, we first showed that traditional non-

computational (black-box) PUFs are not useful in solv-

ing the software protection problem in offline scenar-

ios. We provided two real-world adversary models and

proposed schemes secure both (using trusted hardware

in the strong case). Our results show that incorporating

PUFs as a method for software protection will require

systems based approaches and methodologies.
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