Poster: Blockchain Mempool Security: Provable
Designs, Formal Proofs, and Automated Verification

Wanning Ding
Syracuse University
Syracuse, New York, USA
wding04 @syr.edu

I. INTRODUCTION

In permissionless blockchains with open membership, de-
nial of service (DoS) attacks remain a fundamental threat. In
such attacks, an adversary can excessively consume blockchain
services without being held accountable. Although extensive
protocols have been proposed to mitigate various forms of DoS
(e.g., Sybil resistance through mining protocols [1]-[3], and
execution fees to deter resource-exhausting smart contracts [4],
[5]), securing a blockchain system against DoS attacks remains
an open problem. This gap arises due to undefined behaviors
and the wide divergence between protocol design and real-
world implementation.

One particularly vulnerable component that has received
limited attention from protocol designers is mempool. On each
blockchain node, the mempool stores unconfirmed transac-
tions before they are processed by downstream services such
as mining or transaction propagation. A successful denial
of mempool service can cascade into broader disruptions,
including preventing validators from including transactions
in blocks. As shown in recent work [6], such attacks can
cause validators to produce empty blocks, resulting in global
network degradation. The only known Ethereum mempool
DoS attacks, namely DETER attacks, were discovered through
manual code inspection [6], indicating a lack of systematic
tools for exposing these vulnerabilities.

Problem Statement: In this work, we tackle the automatic
exploit generation for understanding Ethereum mempool DoS
security. While manual efforts have found isolated issues, there
is no systematic framework to comprehensively and efficiently
explore the space of potential mempool DoS attacks. Auto-
matic exploit generation is essential for enabling Ethereum
developers to proactively test their clients offline and for
defenders to build more effective online detection mechanisms.

To this end, we define a specific class of mempool DoS
attacks, which we call Asymmetrical DeniAl of Mempool Ser-
vice (ADAMS). In these attacks, the adversary aims to fill the
victim’s mempool with crafted transactions at a significantly
lower cost than the cost incurred by the displaced or rejected
victim transactions. The asymmetry in cost makes such attacks
particularly dangerous and cost-effective for the adversary.
Threat Model: We assume an ADAMS attacker controls a
node in the Ethereum network and connects to several normal

Yibo Wang
Syracuse University
Syracuse, New York, USA
ywang349 @syr.edu

Yuzhe Tang
Syracuse University
Syracuse, New York, USA
ytang100 @syr.edu

nodes, selecting a specific one as the victim. The attacker
aims to disable the mempool service of the victim node by (1)
evicting existing transactions and (2) occupying the mempool
to block new transactions. As demonstrated in prior work [6],
attackers can select high-value victims, such as nodes offering
RPC services or mining pool infrastructure, to maximize
the impact. Importantly, an ADAMS attack is considered
successful only when the attacker achieves mempool denial at
a cost significantly lower than that of the victim transactions
displaced or prevented from entering.

II. APPROACH

A. Design Rationale and Overview

Mempool

. . service

Model oPatterfg Exploit QExleti Ethereum denied !
checker generator clients

Fig. 1. Workflow overview of attack discovery

Given an Ethereum client, our goal is to generate crafted
transaction sequences that cause successful ADAMS attacks
on the mempool. Exhaustively searching the vast input space
(e.g., 25120 in Geth) is impractical. To address this, we propose
a two-level framework: (1) discover abstract attack patterns
via model checking on a simplified mempool model; and (2)
concretely validate and mutate them against real clients.

B. Step 1: Find Patterns by Model Checking

Generated

tx trace | Current state

Init state Assertion)|

Fig. 2. Checking the mempool model by exploring transactions.

We construct a lightweight mempool model that captures
key admission rules shared across Ethereum clients, such as
transaction replacement and fee-based eviction. The model
operates on Ether-transfer transactions with fixed gas, and all
accounts start with equal balances. Using TLA+ [7], we apply

model checking to explore transaction sequences under two
initial mempool states: one full of normal transactions, and
one empty.

We define safety using three assertions: at least one original
transaction should remain, the total fee value should remain
high, or new normal transactions should still be accepted. A
violation of all three indicates a successful ADAMS attack
pattern.

From this process, we discover nine distinct attack patterns.
Four of them evict existing transactions from a full mempool,
including ED1 to ED4. The remaining five lock an initially
empty mempool to decline subsequent valid transactions,
including LD1 to LDS5. These patterns cover different design
choices: directly using invalid transactions, using valid ones
that later become invalid, or using valid low-fee transactions
strategically. Notably, seven of these patterns are new and were
previously unknown in the literature.

C. Step 2: Concrete Exploit Generation

To validate these attack patterns on real Ethereum clients,
we develop a concrete exploit generation algorithm as shown
in Figure 3. The algorithm takes as input a discovered pattern
and a target client, then adaptively mutates implementation-
specific knobs, such as how transactions are grouped into
messages or which accounts are used.

Exploit generator
‘ Depth-first search \

No Set)‘ing
Lastmsg |,
succeed? Next msg ‘

Found _ ves
exploit

Init state,
tx trace

Feedback

‘ Target mempool ‘

Fig. 3. Workflow of concrete exploit generation

It iteratively constructs candidate traces and replays them
against the client’s mempool, checking whether the result
satisfies one of two success conditions: (1) the mempool evicts
legitimate transactions while retaining only low-cost attacker
transactions, or (2) the mempool locks out all new transactions
and holds only attacker-crafted ones.

To efficiently search the space, we use a depth-first strategy.
If a partial trace makes progress, such as causing a new
eviction, the algorithm continues; otherwise, it backtracks
and tries a different setting. This approach allows us to
synthesize practical ADAMS exploits that are both effective
and implementation-aware.

III. ATTACK EVALUATION

We evaluate the effectiveness of the discovered ADAMS
attacks using both local networks and the Ethereum Rinkeby

testnet. We measure success by how much the attack disrupts
the inclusion of normal transactions in blocks, and how much
Ether the attacker spends per disrupted block.

On the Rinkeby testnet, we launch an ED4 attack using
over 6,000 crafted transactions sent from an attacker node to
the public network. These transactions successfully propagate
to over 90 percent of the testnet nodes. Figure 4 shows
an Etherscan screenshot of the blocks generated during the
attack. Gas usage in these blocks drops sharply from normal
levels (above 8.9 percent) to as low as 0.34 percent. The
first block includes mostly attacker replacement transactions,
while the next two blocks remain underutilized and carry a
mix of attacker and normal transactions. Notice that in our
experiments, we didn’t target our attacks to the top miner
nodes as the existing DETER attacks entail.

Block Txn Miner Gas Used

4,463,019 (14.88%)

0x6dc0cObe4cBb2dfe750 1,202,599 (4.01%)
Attack

1,829,977 (6.11%)
end -

6,992,835 (23.31%)

8,043,105 (26.81%)
X6635(83421bf059cd81 8 ’

8,063,628 (26.87%)

... Attack 3,628,184 (12.11%)
begin ——

3,328,975 (11.10%)

2,671,255 (8.90%)

Fig. 4. Etherscan screenshot of the blocks generated during the attack on
Rinkeby

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” May
2009. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[2] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies - A Comprehensive
Introduction. Princeton University Press, 2016. [Online]. Available:
http://press.princeton.edu/titles/10908.html

[3] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings,
Part I, ser. Lecture Notes in Computer Science, J. Katz and H. Shacham,
Eds., vol. 10401. Springer, 2017, pp. 357-388. [Online]. Available:
https://doi.org/10.1007/978-3-319-63688-7_12

[4] D. Pérez and B. Livshits, “Broken metre: Attacking
resource metering in EVM)” in 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society,
2020. [Online]. Available: https://www.ndss-symposium.org/ndss-paper/
broken-metre-attacking-resource-metering-in-evm/

[5S] T. Chen, X. Li, Y. Wang, J. Chen, Z. Li, X. Luo, M. H. Au, and
X. Zhang, “An Adaptive Gas Cost Mechanism for Ethereum to Defend
Against Under-Priced DoS Attacks,” in ISPEC 2017, 2017, pp. 3-24.
[Online]. Available: https://doi.org/10.1007/978-3-319-72359-4_1

[6] K. Li, Y. Wang, and Y. Tang, “DETER: denial of ethereum
txpool services,” in CCS ’'21: 2021 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, Republic of
Korea, November 15 - 19, 2021, Y. Kim, J. Kim, G. Vigna,
and E. Shi, Eds. ACM, 2021, pp. 1645-1667. [Online]. Available:
https://doi.org/10.1145/3460120.3485369

[7]1 L. Lamport, Specifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002. [Online].
Available: http://research.microsoft.com/users/lamport/tla/book.html

» 'EEE S&P 46th IEEE Symposium on Security and Privacy
@IEEESSP

'CEE S&7

Blockchain Mempool Security: Provable Designs,
Formal Proofs, and Automated Verification

Syracuse

Wanning Ding € Yibo Wang @ Yuzhe Tang ¥ University

Introduction Securlty Definition

e Mempool - critical subsystem in blockchain ot g1 |—»| 812
e Damage of a denied mempool /

o Validator unable retrieve txs. S:{tx0} \
tx2 tx1

o Web3 clients unable to transact.

X X
(ié%s?%igz----i.{}giZZESgﬁ}---*'>

Client Propagate

Provable Designs

S2 [—»| S21

Eviction Security: V S° € JS”, S, }, fees(S’) = g(S)
Locking Security: V te € {te , te_, te , te,}, price(te) < h(S)

Proof in Pen and Paper (IEEE S&P'25)

e Naive proof by exhaustion
o N! permutations

Admit by Ancestor Min Price (AP)

o Score-AP (Ancestor Minimum e Our proof
Price): Lowest price in a o f(S21) = 1(S12): Order insensitivity
transaction's ancestors. | m Order of tx doesn’t affect mempool end state
o Admission pOIlcy: Admit transaction m Reducing N! permutaticns to 1.
ta, evict Chlld.transaCtlon te of the O f(S’]Z) > f(S']): Monotonic score increase
lowest score if.f score(ta) > score(te). m f(S123) > f(S12) > f(S1) > f(S): Induction
o f(S123) > g(S123)
% 12 |4X25 [5123
Policy AP tx1 NG 1x2
y Sender Nonce Price Scoreup tx1 tx3 | S13 |7/ | S132
X3 i tx; | Alice | 1 | | y 521 1239 5213
tx2
tx1 11 tx, Alice | 2 [100] 1 S I 15218,
tx3N [go3 | X1y [534
tx2 tx; | Bob 1 10 | 10
; tx2
S score. 2 tx;, David| 1 | 20 | 20 e s | s812
:5‘ s32 |-2X4p-[5321
Toward Formal Proofs
9 | Theorem mempool_price_always_increases : Baseline memp00| IN mModel checker
10 forall (mp_before mp_after : Mempool) (tx : Tx), S ” t t h t : t
11 mp_after = admit_tx mp_before tx -> ® mall state, snor |npU SequenCe
12 total_price mp_before <= total_price mp_after. e Atomic tx JHODULE main
® A Set Of tXS iAsSstgc:;N{N'P']:}; sti: {N,P,F}; ops:{P,F};
Specify property and proof 5 miti) = NG it =)
.] TRANS case
e Coq supports generating constraints from 7ty n N 6ty = N 6 aps = Pinext(st) = P 6 next sh) = sy
code and solving them. D ThOR s sextishy = W & cont by oy e
13 | Pxrook. 11LTLSPEC G(styg '= F | st !'= F); , ,
14 intros mp_before mp_after tx Heq. 12SPEC AG EF((stg = F & sty = F) —> EX (stg = P & st; = F));
15 unfold admit_tx in Heq.
T T S S D Tarcrg— RQ: How to scale to larger mempool
|:) — (-Ab(jd:’s(:- 1:f:‘:’.fizrn;?(tml 1s not full - directly add tx) ' Reduce State SpaCe WithOUt |OSing
20 subst mp_arfter.
| Gen s matter - gxvmbetoren) L erere soundness/completeness’?
:_ Slm;l otal_price mp_before < cotal_price tx :: mp_before) +
24 (» Goal: total_price mp_before <= tx. (price) + total_price mp_beforex)
5 lia. (*Linear Integer Arithmeticx)

