
Poster: Dynamic Multi-Fuzzer Scheduling via
Reinforcement Learning

Naomasa Matsubayashi, Yuichi Sugiyama
Ricerca Security, Inc.

Email: {naomasam, yuichis}@ricsec.co.jp

Abstract—In this paper, we focus on macro-level optimization
that dynamically switches among multiple fuzzers and propose
an automated switching approach using reinforcement learning
(RL). By controlling fuzzers with different exploration charac-
teristics on the same CPU core, a RL agent sequentially decides
which fuzzer to use, using the number of newly discovered seeds
as a reward. We applied our approach to real-world programs
and confirmed that exploration efficiency improved when training
and evaluation were performed on the same target program.
Furthermore, we observed partial transferability in a specific
case when applying the trained agent to other programs.

I. INTRODUCTION

Fuzzing is widely used as a software defect detection
technique, leveraging automated input generation and runtime
feedback to efficiently discover previously unknown vulnera-
bilities. Previous studies have primarily focused on micro-level
optimization within individual fuzzers, such as dynamically
optimizing seed selection and mutation strategies [1]. Mean-
while, macro-level optimization, in which multiple fuzzers
are used either concurrently or sequentially, has also recently
attracted attention [2], [3], further expanding the exploration
space by sharing seeds generated by each fuzzer.

However, many existing methods simply run fuzzers in
parallel in a fixed manner, offering insufficient mechanisms
for flexibly switching among fuzzers according to the dynamic
execution status or internal structure of the program under
test (PUT). Therefore, in this study, we propose an approach
that uses reinforcement learning (RL) to dynamically optimize
switching among fuzzers. Specifically, a RL agent, with the
number of newly saved seeds as its reward, determines which
fuzzer to execute at each point in time.

II. BACKGROUND AND MOTIVATION

Among various software defect detection methods, fuzzing
stands out for its ability to efficiently uncover unknown
vulnerabilities by iteratively generating and mutating inputs
based on runtime feedback [1]. A single fuzzer comprises
multiple components (e.g., seed selection and mutation), each
with a range of parameters. Much research has focused on dy-
namically optimizing these parameters to improve exploration
efficiency [4]–[6]. We refer to this type of optimization within
a single fuzzer as micro-level optimization.

Meanwhile, macro-level optimization, which harnesses mul-
tiple fuzzers either in parallel or in stages to explore diverse
execution paths, has garnered attention [2], [3], [7]. For
example, EnFuzz [2] runs heterogeneous fuzzers in parallel
and shares seeds among them, thereby discovering paths and

bugs that a single fuzzer might miss. However, many existing
methods only execute fuzzers in a fixed parallel manner,
providing insufficient flexibility to reallocate resources as time
progresses. In reality, the optimal fuzzer can shift depending
on both the characteristics of the PUT and the current stage of
exploration̶some fuzzers excel in initial exploration, while
others are specialized for particular input formats.

Recent work such as autofz [7] dynamically switches
fuzzers at runtime by monitoring progress, indicating that
adaptive resource allocation tailored to the exploration process
can yield further efficiency gains. Building upon these insights,
this study proposes a macro-level optimization employing RL
for dynamic fuzzer switching, providing more flexible and
effective resource allocation than existing approaches.

III. PROTOTYPE IMPLEMENTATION

We implement an adaptive scheduler that dynamically
switches between AFL++ (mutation-oriented) and Angora
(constraint-guided), leveraging their complementary explo-
ration strengths. A Python script orchestrates these fuzzers,
leveraging the asynchronous advantage actor-critic (A3C) al-
gorithm from the Ray RL library to guide switching decisions.
Specifically, the agent learns to choose between two actions
̶ running AFL++ for 10 iterations or running Angora for 10
iterations̶based on observed execution metrics.

We provide the agent with simple statistics such as the
number of times each fuzzer has been selected and the total
number of discovered seeds, which constitute its state. The
reward is defined as the number of newly saved seeds in each
iteration. By monitoring the number of newly discovered seeds
at each iteration, the A3C agent learns which fuzzer is more
effective at different stages of execution, ultimately enabling
it to automatically derive an optimal fuzzer-switching policy.

IV. EVALUATION

In this section, we address two research questions (RQ) to
evaluate the effectiveness and generalization capability of our
macro-level optimization approach based on fuzzer switching:
RQ1: Does performance improve when the model is trained

and evaluated on the PUT?
RQ2: Can a model trained on one PUT also yield perfor-

mance improvements on a different PUT?
We compared our RL-based fuzzer switching method with

a baseline that randomly switches between the two fuzzers.
In both cases, we measured the progression of coverage over
time. For the RL-based method, the policy was learned offline



0 1 2 3 4
Execution 1e7

2600

2650

2700

2750

2800
Co

ve
ra

ge
bind9(DNS server)

RL
Random

0 1 2 3 4 5 6
Execution 1e7

4000

4200

4400

4600

4800

5000

Co
ve

ra
ge

libxml2(XML parser)

RL
Random

Fig. 1: Coverage over time when trained and evaluated on the
same PUT (average of 80 runs).

for 10,000 training cycles on each target PUT, following an
offline RL (also known as batch RL) approach. This training
phase utilized the A3C algorithm and the reward mechanism
detailed in Section III. During the subsequent evaluation
runs, this fixed pre-learned policy was applied consistently to
make scheduling decisions. Our evaluation experiments were
conducted on several PUTs selected from FuzzBench [8].

A. RQ1: Same-PUT Performance

To assess the effectiveness of RL in the fuzzer-selection
task, we examined whether performance improves when the
model is evaluated on the same PUT used for training. We first
trained and evaluated on bind9 (DNS server parsing network
protocols). We then performed a similar experiment training
and evaluating on libxml2 (XML parser library).

Figure 1 shows the results for both experiments. For bind9,
our approach shows almost no performance difference from
random switching in the early stages, but achieves higher final
coverage. For libxml2, it exhibits a faster initial coverage
growth and similarly obtains a higher final coverage. These
findings indicate that macro-level optimization through RL is
effective at least for the same PUT trained on.

B. RQ2: Cross-PUT Generalization

Next, we evaluated the generalization capability by testing
whether the model trained on bind9 improved performance
when applied to different PUTs. We applied the bind9-
trained model to libxml2, as well as to harfbuzz (text
shaping engine handling font files), sqlite3 (database en-
gine processing SQL), and libpcap (packet capture library).

Figure 2 shows the results. The bind9-trained model only
improved performance significantly on libpcap, showing
little difference for libxml2, sqlite3, or harfbuzz. This
limited transfer might stem specifically from shared network
packet processing logic between bind9 and libpcap. More
generally, effective generalization seems to require specific
similarities in PUTs’ input structure or execution behavior.

V. CONCLUSION AND FUTURE DIRECTION

In this paper, we proposed a prototype system that uses
RL to achieve macro-level optimization by switching among
multiple fuzzers, and evaluated it on AFL++ and Angora.
Experimental results showed that when training and evaluation
were conducted on the same PUT, our approach achieved
higher coverage than random switching. However, applying the

0 1 2 3 4 5 6 7
Execution 1e7

4000

4200

4400

4600

4800

5000

Co
ve

ra
ge

libxml2(XML parser)

RL
Random

0 1 2 3 4 5 6 7
Execution 1e7

4600

4650

4700

4750

4800

4850

4900

Co
ve

ra
ge

harfbuzz(text shaper)

RL
Random

0 1 2 3 4 5
Execution 1e7

12000

13000

14000

15000

16000

17000

Co
ve

ra
ge

sqlite3(SQL DB)

RL
Random

0.0 0.5 1.0 1.5 2.0 2.5
Execution 1e6

600
650
700
750
800
850
900
950

1000

Co
ve

ra
ge

libpcap(pkt. capture)

RL
Random

Fig. 2: Coverage over time when applying the model trained
on bind9 to different PUTs.

trained model to a different PUT often yielded minimal per-
formance improvements. This indicates that a PUT’s specific
characteristics, particularly those related to its input structure
and execution behavior, significantly impact the effectiveness
and transferability of learned fuzzer-switching policies.

In future work, we plan to explore methods that learn more
general fuzzer-switching policies by considering PUTs’ unique
structural and behavioral properties. Understanding these prop-
erties via static [9] and potentially dynamic analysis could
reveal transferable features, improving cross-PUT strategies.

ACKNOWLEDGMENT

This work was supported by the Acquisition, Technology &
Logistics Agency (ATLA) under the Innovative Science and
Technology Initiative for Security 2020 (JPJ004596).

REFERENCES

[1] X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A survey for
roadmap,” ACM Computing Surveys, vol. 54, no. 11s, pp. 1–36, 2022.

[2] Y. Chen, Y. Jiang, F. Ma, J. Liang, M. Wang, C. Zhou, X. Jiao, and Z. Su,
“Enfuzz: Ensemble fuzzing with seed synchronization among diverse
fuzzers,” in USENIX Security Symposium, N. Heninger and P. Traynor,
Eds., 2019, pp. 1967–1983.

[3] E. Güler, P. Görz, E. Geretto, A. Jemmett, S. Österlund, H. Bos, C. Giuf-
frida, and T. Holz, “Cupid: Automatic fuzzer selection for collaborative
fuzzing,” in The Annual Computer Security Applications Conference
(ACSAC), 2020, pp. 360–372.

[4] D. She, A. Shah, and S. Jana, “Effective seed scheduling for fuzzing with
graph centrality analysis,” in IEEE Symposium on Security and Privacy
(S&P), 2022, pp. 2194–2211.

[5] Y. Koike, H. Katsura, H. Yakura, and Y. Kurogome, “Slopt: Bandit
optimization framework for mutation-based fuzzing,” in The Annual
Computer Security Applications Conference (ACSAC). New York, NY,
USA: Association for Computing Machinery, 2022, p. 519 ‒ 533.

[6] P. Jauernig, D. Jakobovic, S. Picek, E. Stapf, and A. Sadeghi, “DARWIN:
survival of the fittest fuzzing mutators,” in The Network and Distributed
System Security Symposium (NDSS), 2023.

[7] Y.-F. Fu, J. Lee, and T. Kim, “autofz: automated fuzzer composition at
runtime,” in USENIX Security Symposium, 2023, pp. 1901–1918.

[8] “Fuzzbench: An open fuzzer benchmarking platform and service,”
https://fuzzbench.com.

[9] D. Zhang, A. Fioraldi, and D. Balzarotti, “On understanding and fore-
casting fuzzers performance with static analysis,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2024, pp.
3973–3987.



Introduction

Dynamic Multi-Fuzzer Scheduling via Reinforcement Learning
Naomasa Matsubayashi, Yuichi Sugiyama

Ricerca Security, Inc.

Select a seed to be mutated.
Generate a new input to test the PUT.
Execute the input and collect the coverage.
Save inputs with increased coverage.

RL-based “Micro-level” Optimization
Reinforcement Learning (RL) is often applied to part of the 
fuzzing components (e.g., seed scheduler[1,2] or mutator[3,4]) 
to guide action selection based on runtime feedback.

Proposal: RL-based Multi-Fuzzer Scheduling 

Challenge: Cannot change strategies at 
runtime based on various feedbacks (e.g., 
coverage statistics and PUT characteristics).

Each fuzzer has strengths and weaknesses on 
the PUT and the current exploration status.

Multi-Fuzzer Scheduling: Switching fuzzers
boosts coverage by combining their strengths.

Implementation & Evaluation
Switches between AFL++ (mutation) and Angora (constraint-solving), leveraging complementary strengths.
A policy learned via offline RL (optimizing for new seeds) selects the next fuzzer based on current fuzzing state.

RQ1: Same-PUT Performance

RQ1: Improves same-PUT coverage.

RQ2: Cross-PUT Generalization

RQ2: Limited transfer; possible for similar PUTs (e.g., bind9→libpcap).

RL-based scheduling improves same-PUT coverage.
Cross-PUT transfer limited; possible among similar PUTs.
Analyzing structural & behavioral similarities may improve transfer.

[1] Yue, Tai, et al. "EcoFuzz: Adaptive Energy-Saving greybox fuzzing as a variant 
of the adversarial Multi-Armed bandit." USENIX Security 2020.

[2] Wang, Jinghan, et al. “Reinforcement Learning-based Hierarchical Seed
Scheduling for Greybox Fuzzing.” NDSS 2021.

[3] Wu, Mingyuan, et al. “One Fuzzing Strategy to Rule Them All.” ICSE 2022.
[4] Koike, Yuki et al. “SLOPT: Bandit Optimization Framework for Mutation-Based 

Fuzzing.” ACSAC 2022.

Dy

Contribution: This approach addresses the limitation of 
static strategies by applying RL to global multi-fuzzer 
scheduling, extending beyond local component optimization.

Training: bind9 (DNS server) / Evaluation: Other PUTsTraining & Evaluation: Same PUT

Conclusion and Future Work Reference


	sp2025-rl-paper.pdf
	sp2025-rl-poster-letter-size.pdf

