Poster: LLM-empowered Cyber-Physical Systems
by Integrating Local and Remote Inference

Bo Chen
Department of Computer Science, Michigan Technological University, Houghton, MI, USA
bchen@mtu.edu

Abstract—Large language models can be utilized to improve
the reasoning capabilities of modern cyber-physical systems
(CPS). However, the inference time could be a significant obstacle
due to the low-power nature of CPS. This work proposes a novel
design to integrate local inference and secure remote inference
to address this obstacle. The preliminary results demonstrate the
feasibility of the proposed approach.

Index Terms—cyber-physical systems, LLM, inference, security

I. INTRODUCTION

Cyber-physical systems (CPS) such as humanoid robots [2],
robot dogs are increasingly being deployed. Large language
models (LLM) represent a new form of Al that is capable of
understanding, creating, and forecasting language by training
over massive text datasets. Integrating LLMs with cyber-
physical systems allows smarter decision making in complex
environments, thanks to their superior reasoning capabilities
compared to traditional AI. However, the considerable size of
LLMs leads to slow inference speeds, which poses a significant
challenge for low-power cyber-physical systems.

To address this challenge, the CPS terminal device can
simply delegate the LLM inference process to more powerful
edge/cloud servers (remote inference for short). However,
there are some issues that need to be addressed. First, remote
inference strongly relies on network connectivity, meaning that
its performance can be greatly influenced by factors such as
network latency and current server load. If the network suffers
from congestion or the servers are overwhelmed by a large
number of requests, remote inference would suffer from severe
delays in responses, preventing the CPS devices from making
real-time decisions. Second, remote inference suffers from
various outsider attacks, leading to the compromise of user
privacy (e.g., the attacker may view prompts/responses without
authorizations), data integrity (e.g., the attacker may corrupt
prompts/responses) and data freshness (e.g., the attacker may
replay obsolete prompts/responses). Additionally, the attacker
may perform DoS attacks on the edge/cloud servers.

To address the first issue, we cannot rely solely on the
remote servers for LLM inference. Having observed that many
LLM models are open and low-power devices are capable
of running a “thin” version of a given model, we integrate
remote inference and local inference to achieve the best trade-
off among inference effectiveness, time delay, and robustness.
In particular, the CPS terminal device runs a “thin” version
of the LLM model locally, and the cloud/edge servers run

“thicker” versions of the LLM models remotely. The prompt
issued by the CPS terminal device will be sent simultaneously
to the LLM modes running on the local device, the edge, and
the cloud server, respectively. The highest quality response
received within a predetermined time period will be adopted.
To address the second issue, we incorporate security strate-
gies ensuring user privacy, data integrity and freshness, and
mitigating DoS attacks on the cloud/edge servers.

II. BACKGROUND

A large language model (LLM) is an Al model that has been
trained on a large amount of text data. For example, Google
Gemma 3 (27B) was trained with 14T tokens, and Microsoft
Phi-4 was trained using 9.8T tokens. By extracting semantic
insights from language data, LLMs outperform traditional Al
methods in reasoning tasks. Many modern LLMs are built
using transformer architecture. Several LLM services have
been provided, for example, ChatGPT, Claude, Grok, and
Gemini. These services allow users to send prompts and
receive responses, serving as examples of remote inference.
There are also quite a few LLM models which are open
(e.g., Llama series from Meta, Qwen series from Alibaba).
The open models can be downloaded and the prompts can be
answered locally using inference tools such as Hugging Face
transformers and llama.cpp (that is, local inference). Open
models may be provided with a variety of sizes. For example,
Qwen?2.5 has versions 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B.
Typically, an LLM model with a larger size would have better
performance in complex tasks with higher computational cost.

III. SYSTEM AND THREAT MODEL

We consider a system consisting of LLM cloud/edge servers
and clients. The servers provide LLM inference services by
receiving prompts from clients and sending back responses.
LLM clients are CPS devices, such as a humanoid robot, a
robot dog, or a robot vehicle. We only consider external attack-
ers who: 1) may inspect the network packets and compromise
use privacy; and 2) may alter the packets being captured and
simply replay the old packets; and 3) may perform a DoS
attack on the LLM servers. We do not consider attackers who
can compromise the CPS devices or the LLM servers.

IV. DESIGN

To ensure that the CPS device can always receive a timely
response from the LLM model to support its decision-making,
we introduce two key designs.

1: integrating both local and remote inferences. Our
rationale is that remote inference can mostly provide fast
response since the edge/cloud servers are typically much more
powerful than a low-power CPS device; however, it may not be
sufficiently reliable as the network bandwidth is not guaranteed
(in the worst case, there is no network connection at all)
and the server might experience performance degradation if it
becomes overloaded. This would be exacerbated in an adver-
sarial setting. Local inference will be used as a complement.
Specifically, we deploy LLM models of different sizes. The
large model is deployed in the cloud, the medium one at the
edge, and the small one operates locally within the device.
Upon querying the LLM model, three identical prompts are
sent to the cloud, the edge, and the local model simultaneously.
A timer is set after the prompts are sent. The final decision
is based on the responses received before the timer expires,
with higher priority given to the responses from larger models
if multiple responses are received. If no response has been
received within the timer, the timer should be increased.

2: secure remote inference. Remote inference may suffer
from various network attacks. The attacker may intercept the
prompts/responses in plaintext, compromising user privacy.
Therefore, prompts/responses should be encrypted using a
secret key shared between the CPS device and the LLM server.
Upon sending an encrypted message, the sender ID should
also be sent to allow the receiver to locate the corresponding
secret key for decryption. In addition, to prevent the attacker
from modifying the prompts sent by the LLM clients or
the responses sent back by the LLM servers, the sender
should compute a message authentication code (MAC) over
the encrypted message. A timestamp is also incorporated into
the MAC code to ensure the freshness of the message. The
receiver should check both the MAC code and the timestamp
when receiving a message before decrypting it.

The prior attacks and defenses are general for any net-
work communications. However, the DoS attack on the LLM
server could be unique in that the attacker simply sends junk
messages to overwhelm the LLM servers, causing a denial
of service. Junk messages are computationally inexpensive
to generate, but verifying them could be computationally
expensive using the MAC code. To discourage this unique DoS
attack, we propose to use sample-based integrity checking to
quickly filter out the junk message without re-computing the
MAC code over the entire message. Our design is as follows.

i) After encrypting a message, the sender will select a
snippet (a few bytes in size) from the encrypted message
at a random location. The random location is computed by
applying a pseudo-random function (PRF) over the sender ID
and the current timestamp with a shared secret key. The snippet
is further encrypted using the secret key and placed at the head
of the encrypted message. Generating the authenticated snippet
requires one PRF and one block cipher.

ii) After receiving a message, the receiver can filter out the
message as follows: The receiver will extract the sender ID
and the timestamp from the message, and apply a PRF over
them using the shared secret key, re-generating the random

CPS device Edge server Cloud server
Qwenl.5B Qwenl.5B Qwen3B Qwenl.5B Qwen7B
Delay (s) 1.1 0.905 (0.914) 1.80 (1.81) | 0.61 (0.62) 1.73 (1.77)
TABLE T

INFERENCE DELAY, MEASURING THE TIME BETWEEN THE CPS DEVICE
ISSUING A PROMPT AND RECEIVING A RESPONSE FROM EACH ENTITY
RUNNING A RESPECTIVE LLM MODEL. X(Y) - X IS THE DELAY WITHOUT
SECURITY STRATEGIES AND Y IS THE DELAY WITH SECURITY
STRATEGIES.

location. The receiver will further extract the snippet from the
encrypted message, and re-encrypt the snippet using the same
encryption algorithm and the secret key. After encryption, the
receiver simply compares it with the one stored at the head
of the encrypted message. If they do not match, the message
should be filtered out. Filtering can be performed efficiently
using one PRF and one block cipher.

V. PRELIMINARY IMPLEMENTATION AND EVALUATION

We have implemented a preliminary prototype for the
proposed design. The CPS device was implemented using an
NVIDIA Jetson Orin Nano 8GB module (equipped with Arm
Cortex-A78AE processor and 8GB RAM); the edge server
was implemented on a Lenovo IdeaCenter 300s computer
(equipped with Intel Core i5 CPU and 16GB RAM), and the
cloud server was implemented using an Acer Predator Helios
18 computer (equipped with Intel® Core™ i9 processor,
64G RAM and GeForce RTX™ 4090 GPU). Communication
between the client and the servers was based on UDP. Encryp-
tion was implemented using AES-128-GCM, which belongs
to authenticated encryption and therefore also provides data
integrity assurance. The PRF was instantiated using HMAC-
SHA256. For LLM inference, we mainly modified the open-
source inference tool llama.cpp [1] to support local and remote
inference. The models being deployed were Qwen2.5 1.5B, 3B
and 7B, in GGUF format with 8-bit quantization. We use a
simple prompt “hello” to test each model.

Preliminary results are shown in Table I. We can observe
that: 1) running models of the same size, remote inference has
significantly less delay compared to that of local inference; and
2) remote inference is good for running larger models, and 3)
local inference is good for running smaller models; and 4) our
security strategies only add tiny additional overhead (1%-2%).
Future works. 1) Currently, we only use a simple “hello”
prompt to test the design. This is because the response to
“hello” is short and pretty similar under different models.
For other prompts, the generated responses will be very
diverse and the delay caused by this content generation would
vary significantly. We will test a diverse set of prompts in
future work to assess this impact. 2) CPS systems may be
deployed in diverse network environments, and how varying
network conditions may affect the inference delay will also be
evaluated. 3) Edge/cloud servers may need to handle a large
number of inference requests, and we will investigate load-
balancing strategies specific in this context.

REFERENCES

[1] GitHub - ggml-org/llama.cpp: LLM inference in C/C++. https:/github.
com/ggml-org/llama.cpp.

[2] Invasion of the Home Humanoid Robots. https://www.nytimes.com/2025/
04/04/technology/humanoid-robots- 1 x.html.

LLM-empowered Cyber-Physical Systems

Michigan
Technological
1885| UNIVersity

Introduction

» CPS devices like humanoid robots
and robot dogs benefit from LLMs'
reasoning.

» Remote inference is powerful but
depends on network stability and
raises security concerns.

* A hybrid solution is proposed: local
"thin" LLM and remote "thick" LLMs.

» Highest-quality, fastest response is
selected within a timeout window.

Background

* Alarge language model is an Al
model that has been trained on a vast
and diverse collection of text data.

+ Open models may be provided with a
variety of sizes, e.g., Qwen2.5 has
versions 0.5B, 1.5B, 3B, 7B, 14B,
32B, and 72B.

* Local inference uses local resources
of the CPS device to run a model via
tools like llama.cpp.

+ Remote inference uses edge/cloud
servers, capable of running larger
models.

by Integrating Local and Remote Inference

Bo Chen
Computer Science Department, Michigan Technological University

System/Adversarial Model

- A system that consists of LLM

cloud/edge servers and CPS clients.

» Attacker can intercept or alter data

over network, but cannot compromise
the devices themselves.

» Threats include privacy leaks, data

tampering, replay attacks, and DoS.

Cloud server
CPS dewces
? Edge server

CPS devices

Key design 1: integrating
both local and remote
inference

Deploy LLM models of different sizes:
the large model is deployed in the
cloud, the medium one at the edge,
and the small one operates locally
within the device.

Prompts sent to cloud, edge, and local
simultaneously.

Timeout determines which response
to use, prioritizing higher model
quality.

Key design 2: secure remote inference

Encrypted communication (AES-128-GCM).

Message authentication with HMAC-SHA256.

Timestamping to prevent replay.

Fast filtering to mitigate DoS attacks on the edge/cloud servers: randomly select
(using a pseudo-random function) a snippet from the message and encrypt it with a

secret key.

Preliminary Implementation and Evaluation

» The CPS device: an NVIDIA Jetson Orin Nano 8GB Module; the edge server:
implemented on a Lenovo IdeaCenter 300s computer (Intel Core i5 CPU and
16GB RAM); the cloud server: implemented using an Acer Predator Helios 18
computer (Intel® Core™ i9 processor, 64G RAM and GeForce RTX™ 4090 GPU).

» Observations: 1) upon running models of the same size, remote inference has
significantly less delay compared to that of local inference; and 2) remote
inference is good for running larger models, and 3) local inference is good for
running smaller models; and 4) our security strategies only add tiny additional
overhead (1%-2%).

CPS device Edge server Cloud server
Qwenl.5B Qwenl.5B Qwen3B Qwenl.5B Qwen7B
Delay (s) 1.1 0.905 (0.914) 1.80 (1.81) | 0.61 (0.62) 1.73 (1.77)
Acknowledgments

This work was supported by US National Science Foundation under grant number
2225424-CNS and 2043022-DGE.

	llm inference-abstract
	LLM inference

