
Poster: A Unit Proofing Framework for Code-level
Verification

Paschal C. Amusuo
Purdue University

pamusuo@purdue.edu

Parth V. Patil
Purdue University

patil185@purdue.edu

Owen Cochell
Michigan State University

cochello@msu.edu

Taylor Le Lievre
Purdue University

tlelievr@purdue.edu

James C. Davis
Purdue University

davisjam@purdue.edu

Abstract—Formal verification provides mathematical guaran-

tees that a software is correct. Design-level verification tools

ensure software specifications are correct, but they do not expose

defects in actual implementations. For this purpose, engineers

use code-level tools. However, such tools struggle to scale to

large software. The process of “Unit Proofing” mitigates this

by decomposing the software and verifying each unit indepen-

dently. We examined AWS’s use of unit proofing and observed

that current approaches are manual and prone to faults that

mask severe defects. We propose a research agenda for a unit

proofing framework, both methods and tools, to support software

engineers in applying unit proofing effectively and efficiently. This

will enable engineers to discover code-level defects early.

Index Terms—Vision, Formal methods, Empirical software eng.

I. INTRODUCTION

Software underlies many critical digital and cyber-physical
systems. Code-level defects, such as arithmetic errors and
memory corruption vulnerabilities, compromise system safety
and security and cause significant losses [1], [2]. Traditional
engineering practices, such as program analysis [3] and run-
time sandboxing [4], can detect or mitigate such defects. How-
ever, these methods validate software only approximately and
cannot guarantee correct behavior on all inputs. In contrast,
formal verification [5] proves software correctness, guaran-
teeing no code-level defects. This raises an important (and
perennial) question [6]: how to make formal verification more
cost-effective for software engineers?

Engineering tools and processes help reduce the cost of
applying a technology. For formal methods, there are code-
level verification tools, e.g., the C and Rust bounded model
checkers (CBMC [7], Kani [8]). To improve both engineering
and tool scalability, engineers decompose the software and
verify individual functions within it via unit proofs [9]. These
unit proofs model the function’s interaction with other soft-
ware components and verify the function using this model.
We refer to the process of developing, using, and maintaining
unit proofs as unit proofing. Organizations such as AWS [10]
and ARM [11] have adopted unit proofing to ensure software
correctness and memory safety.

Since code-level verification depends on the unit proofs,
they must be correct. However, there is limited guidance and
tool support for constructing unit proofs. Existing guidelines
are ad hoc and require expertise [12]. There is little publicly-
available tool support, leading to costly manual development
of unit proofs. To assess the quality of current practices, we

evaluated 11 unit proofs used to verify vulnerable functions
in a widely-used operating system. While 5 successfully
identified the corresponding vulnerabilities, the remaining 6
contained faults that obscured others.

We believe that empirically-based guidelines and enhanced

tool support will make unit proofing easier and enable early

discovery of code-level defects. We propose a research agenda
for a principled end-to-end unit proofing framework that can
support software engineers in each stage of the unit proofing
process. The proposed framework comprises of methods and
tools and will help software engineers decompose a software
into optimal verifiable units, develop correct unit proofs for
each unit, validate and repair faulty unit proofs, and ensure
unit proofs are updated as the software evolves. We identify
eight open questions that will need to be addressed, and share
our future plans to this end. If the proposed unit proofing
framework helps software engineers verify their software code
during development, then it will disrupt existing defect-finding
practices such as static analysis, unit testing, and fuzzing.

Fig. 1: Overview of Unit Proofing. To verify function 2,
an engineer models its input, shared resources, and other
functions. A verifier can then check it in isolation.

II. EXPLORATORY STUDY OF UNIT PROOFING

Many questions arise when considering any engineer-
ing process, such as “Does it work?” and “What does it
cost?” [13]. While there are empirical evaluations of code-

level verification tools on software benchmarks [14], no

studies address their effectiveness on real software or

within the unit proofing process. As a first step, we ask:
RQ: Do existing unit proofs expose security vulnerabilities?

We evaluated this question using 11 CVEs in FreeRTOS
and the unit proofs that target the vulnerable functions [15].

https://orcid.org/0000-0003-1001-525X
https://orcid.org/0009-0005-7337-1114
https://orcid.org/0009-0003-5027-7710
https://orcid.org/0009-0007-4816-9875
https://orcid.org/0000-0003-2495-686X


Table I: Assessing unit proofs on known vulnerabilities. Only
5 of the 11 vulnerabilities were exposed by the existing
FreeRTOS unit proofs. UP: Unit Proofing.

Recreated Vuln Exposed Reason UP Stage

CVE-2018-16523 No Insuff. properties Design
CVE-2018-16524 No Function Modeling Development
CVE-2018-16525 No Out-of-date Proofs Maintenance
CVE-2018-16527 No Insuff. Input Model Development
CVE-2018-16600 No Insuff. Input Model Development
CVE-2018-16603 No Insuff. Input Model Development

CVE-2021-31571 Yes — —
CVE-2018-16526 Yes — —
CVE-2018-16599 Yes — —
CVE-2018-16601 Yes — —
CVE-2018-16602 Yes — —

A. Methodology

For each vulnerability, we identified and removed any
validations introduced in the function to fix the vulnerability.
We then executed the unit proofs using CBMC v5.95.1 and
assessed whether the vulnerability was reported. If not, we
identified the reason and repaired the unit proofs as needed.

B. Results

Only 5/11 recreated vulnerabilities were exposed by FreeR-
TOS unit proofs (Table I). With changes to the unit proofs,
all vulnerabilities were exposed and one new high-severity
vulnerability found (CVE-2024-38373). This result shows that
unit proofs are effective, but unit proof engineers can err.
Further details can be found in our technical report [16].

III. RESEARCH AGENDA: A UNIT PROOFING FRAMEWORK

This section presents a unit proofing framework, comprising
novel tools, to automate unit proof development, repair and
maintainance. We discuss the unit proofing stages and present
a research plan to automate them (Figure 2).

1) Software Decomposition: Our goal is to decompose a
software into the minimum number of solvable units.
Software Decomposer: Optimal software decomposition will
require new methods to estimate model complexity and ver-
ification time. Building on research linking program features
to specification size and effort [17], [18], we will analyze unit
proofs to understand how program features influence complex-
ity and duration. These insights will guide a cost estimator
design that evaluates function features to estimate complexity
and verification time and a decomposer algorithm to iteratively
replace the most expensive functions with models.

2) Unit Proof Design and Development: Our goal is to
develop unit proof with models that precisely represent the
unit’s interactions with other software components.
Proof Builder: Deriving software models is a known chal-
lenge. Traditional learning-based assume-guarantee reason-
ing [19], [20] refines assumptions iteratively using coun-
terexamples, but applying this to functions with multiple
interactions is costly due to the need for repeated model

Fig. 2: An end-to-end agenda for unit proof engineering.
Software engineers use a set of tools and intelligent agents
to verify the memory safety of applications.

checking [21]. The proposed proof builder will use a property-
violation guided learning approach to generate the weakest

precondition models for a target function. It will start with
generic proof models and iteratively refine the models until all
reachable code is covered and reported violations are resolved.
The learned models will then be validated for correctness.

3) Unit Proof Repair: Our goal is to detect and repair unit
proof faults, such as those that mask vulnerabilities (§II).
Proof Repairer: First, we will develop a taxonomy of unit
proof faults and corresponding resolutions by empirically
studying existing and new unit proofs, assessing their cover-
age, violation reports, and bug detection abilities, and identify-
ing the different faults that occur and their resolutions. Using
the developed taxonomy, we will design the proof repairer bby
combining the fast but imprecise program analysis techniques
with the code reasoning abilities of large language models
(LLMs) [22], [23].

4) Unit Proof Evolution and Maintenance: The goal here
is to automatically update unit proofs as the software changes.
Proof Updater: When the software changes, the updater will
identify affected unit proofs, assess their validity, and apply
necessary updates. An empirical study will examine how
software changes impact proofs, what invalidates them, and
how they are fixed. To validate updates, the updater will
reverify affected functions, comparing results with prior data
using metrics like coverage and violation reports. Initially,
the proof repairer (§III-3) will be used to resolve invalidated
proofs. In future iterations, we plan to develop an LLM agent
that, informed by empirical insights, can propose specific
updates to the proof that realigns it with the changed software.

IV. CONCLUSION

This poster outlines a research agenda for a unit proofing
framework to support software verification and vulnerability
discovery. Motivated by an assessment of existing unit proofs,
the framework will provide tools and methods to develop,
repair, and maintain unit proofs.
Attribution: An extended version of this abstract, with details
of our result, was published in the 2025 International Confer-
ence on Software Engineering (NIER track) [16].



REFERENCES

[1] Dharun Anandayuvaraj, Matthew Campbell, Arav Tewari, and James C
Davis. FAIL: Analyzing software failures from the news using LLMs.
In the 39th IEEE/ACM International Conference on Automated Software

Engineering, ASE ’24.
[2] Shweta Sharma. Counting the cost of CrowdStrike: the

bug that bit billions. https://www.cio.com/article/3478068/
counting-the-cost-of-crowdstrike-the-bug-that-bit-billions.html.
Accessed: 2024-10-07.

[3] M. Pistoia, S. Chandra, S. J. Fink, and E. Yahav. A survey of static
analysis methods for identifying security vulnerabilities in software
systems. IBM Systems Journal, 46(2):265–288, 2007.

[4] Paschal C. Amusuo, Kyle A. Robinson, Tanmay Singla, Huiyun Peng,
Aravind Machiry, Santiago Torres-Arias, Laurent Simon, and James C.
Davis. ZTD$ {JAVA}$: Mitigating software supply chain vulnerabilities
via zero-trust dependencies.

[5] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, October 1969.

[6] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzger-
ald. Formal methods: Practice and experience. ACM Computing Surveys,
41(4):1–36, 2009.

[7] Daniel Kroening and Michael Tautschnig. CBMC – c bounded model
checker. In Erika Ábrahám and Klaus Havelund, editors, Tools and

Algorithms for the Construction and Analysis of Systems, pages 389–
391. Springer, 2014.

[8] Getting started - the kani rust verifier. https://model-checking.github.io/
kani/. Accessed: 2024-10-01.

[9] Yannick Moy, Emmanuel Ledinot, Hervé Delseny, Virginie Wiels, and
Benjamin Monate. Testing or formal verification: DO-178c alternatives
and industrial experience. IEEE Software, 30(3):50–57, 2013. Confer-
ence Name: IEEE Software.

[10] Nathan Chong, Byron Cook, Konstantinos Kallas, Kareem Khazem,
Felipe R. Monteiro, Daniel Schwartz-Narbonne, Serdar Tasiran, Michael
Tautschnig, and Mark R. Tuttle. Code-level model checking in the
software development workflow. In the ACM/IEEE 42nd International

Conference on Software Engineering: Software Engineering in Practice,
ICSE-SEIP ’20, pages 11–20.

[11] Tong Wu, Shale Xiong, Edoardo Manino, et al. Verifying components of
arm(r) confidential computing architecture with ESBMC. https://arxiv.
org/abs/2406.04375v1, 2024. Accessed: 2024-10-04.

[12] Ghada Bahig and Amr El-Kadi. Formal verification of automotive design
in compliance with ISO 26262 design verification guidelines. IEEE

Access, 5:4505–4516, 2017.
[13] Kelechi G. Kalu, Taylor R. Schorlemmer, Sophie Chen, Kyle A. Robin-

son, Erik Kocinare, and James C. Davis. Reflecting on the use of the
policy-process-product theory in empirical software engineering. In
Proceedings of the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2023, pages 2112–2116.

[14] Dirk Beyer and Thomas Lemberger. Software verification: Testing vs.
model checking. In Hardware and Software: Verification and Testing.
Springer, 2017. 99–114.

[15] FreeRTOS/FreeRTOS/test/CBMC at main · FreeRTOS/FreeRTOS. https:
//github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS/Test/CBMC.
Accessed: 2024-10-08.

[16] Paschal C Amusuo, Parth V Patil, Owen Cochell, Taylor Le Lievre, and
James C Davis. A unit proofing framework for code-level verification: A
research agenda. In 2025 47th IEEE/ACM International Conference on

Software Engineering (New Ideas and Emerging Results track), 2025.
[17] Mark Staples, Rafal Kolanski, Gerwin Klein, Corey Lewis, June An-

dronick, Toby Murray, Ross Jeffery, and Len Bass. Formal specifications
better than function points for code sizing. In 2013 35th International

Conference on Software Engineering (ICSE), pages 1257–1260.
[18] Daniel Matichuk, Toby Murray, June Andronick, Ross Jeffery, Gerwin

Klein, and Mark Staples. Empirical study towards a leading indicator
for cost of formal software verification. In 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, volume 1, pages
722–732. ISSN: 1558-1225.

[19] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S.
PĂsĂreanu. Learning assumptions for compositional verification. In
Hubert Garavel and John Hatcliff, editors, Tools and Algorithms for the

Construction and Analysis of Systems, pages 331–346. Springer, 2003.

[20] D. Giannakopoulou, C.S. Pasareanu, and H. Barringer. Assumption
generation for software component verification. In Proceedings 17th

IEEE International Conference on Automated Software Engineering,,
pages 3–12, 2002. ISSN: 1938-4300.

[21] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Break-
ing up is hard to do: An evaluation of automated assume-guarantee
reasoning. ACM Trans. Softw. Eng. Methodol., 17(2):7:1–7:52, 2008.

[22] Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu
Zhang, Ruijie Fang, Asmita, Ryan Tsang, Najmeh Nazari, Han Wang,
and Houman Homayoun. Large language models for code analysis: Do
LLMs really do their job? In Proceedings of the 33rd USENIX Security

Symposium (USENIX Security 24), 2024.
[23] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu,

and Brad Myers. Using an LLM to help with code understanding.
In Proceedings of the IEEE/ACM 46th International Conference on

Software Engineering, ICSE ’24, pages 1–13, 2024.

https://www.cio.com/article/3478068/counting-the-cost-of-crowdstrike-the-bug-that-bit-billions.html
https://www.cio.com/article/3478068/counting-the-cost-of-crowdstrike-the-bug-that-bit-billions.html
https://model-checking.github.io/kani/
https://model-checking.github.io/kani/
https://arxiv.org/abs/2406.04375v1
https://arxiv.org/abs/2406.04375v1
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS/Test/CBMC
https://github.com/FreeRTOS/FreeRTOS/tree/main/FreeRTOS/Test/CBMC


A Unit Proofing Framework for Code-level Verification: A research Agenda
P. Amusuo, P. Patil, O. Cochell, T. Le Lievre, J. Davis

Published in 
ICSE-NIER ‘25

Do manual proofs find vulnerabilities? Proposed Unit Proofing Framework

Manual Proofs Miss Critical Vulnerabilities
Engineers need automated methods for 
developing and maintaining unit proofs

What is Unit Proofing? 

A software program with a 
potential security vulnerability. 

A unit proof for verifying 
the software program. 

Unit Proofing: Software is decomposed, 
and unit proofs are created to verify units.

Some organizations already use unit proofs.
Let’s make it easier for others !

Only 5/11 of CVEs were exposed. The remaining 
6 were not exposed due to unit proof errors.

Proposal: Tools to assist software decomposition, 
unit proof creation, repair and maintenance.


	Introduction
	Exploratory Study of Unit Proofing
	Methodology
	Results

	Research Agenda: A Unit Proofing Framework
	Software Decomposition
	Unit Proof Design and Development
	Unit Proof Repair
	Unit Proof Evolution and Maintenance


	Conclusion
	References

