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Privacy concerns have led to increasing restrictions on
stateful identifiers [3], [11], [18]. Consequently, the research
community is paying significant attention towards developing
novel stateless device fingerprinting techniques [5], [15], [20],
[21], [23]. Fingerprinting, which uniquely identifies devices,
users, or browsers, is applied in fraud detection, bot detec-
tion [24], user tracking [9], [22] etc..

An ideal fingerprinting technique must be unique, stable
and robust [8]. This means that the technique needs to capture
sufficient differences in terms of software and/or hardware
to distinguish homogeneous devices, with and without back-
ground noise. In addition, the fingerprint should remain stable
over a sufficiently long time period despite background noise.
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Fig. 1. Demonstration of generating the same fingerprint on two identically
configured systems.

Fingerprint.js [9] is a widely used software-based finger-
printing technique, that aggregates both software and hardware
parameters to uniquely identify devices. However, it may gen-
erate identical identifiers in homogeneous settings, as shown
in Figure 1.

To overcome the issue mentioned above, researchers have
proposed various hardware-based device fingerprinting tech-
niques [5], [15], [20], [21], [23] based on side-channels.
These techniques leverage stable hardware properties until the
hardware is changed. Sanchez-Rola et al. exploited a high-
resolution timing-based side channel to fingerprint CPUs [20].
Laor et al. introduced DRAWNAPART [21] to fingerprint
browsers using the underlying GPU via the WebGL library,
with timing side-channel signals as fingerprints. Standalone
power side-channels on the other hand, have been exploited
to leak cryptographic keys [16], [25], [26]. Researchers have
combined this channel for fingerprinting, notably website [19]
and app [4] fingerprinting. DF-SCA [6] proposed the idea of
using DVFS for website fingerprinting.

Building on previous works, we hypothesize the existence
of a fingerprinting signal based on the CPU’s power draw,
specifically the frequency state of the CPU core. Toward this,
we create power-viruses to exploit this signal from the user-

space. We define a power-virus in our work as a program
that can draw various amount of power. Changes in CPU
cores’ power draw alter the frequency state. Variations in
CPU fabrication [14] manifest as timing differences when
controlled by the fingerprinter. Therefore we present CPU-
Print that correlates DVFS-based power side-channels with
device fingerprinting. Even though we hype “power-viruses”,
however, in reality, it is a simple matrix multiplication pro-
gram. We perform some ALU operation (load) on the CPU
cores and then force the CPU cores to sleep. We then change
the load per unit interval to follows a certain periodic function
f(x + P) = f(z); P > 0, to maximize the signal. We
hypothesize that the power draw of our power-virus needs
to be instantaneous but long enough to trigger the frequency
scaling mechanism.

Operating systems (OS) today use power profiles like
power governors in Linux to manage the utilization-to-power
ratio of the CPU cores [2], [7], [17]. From our testing,
we found that the default power governor in Linux and
Android is ondemand from the pool of performance,
ondemand and powersave. The ondemand governor
samples CPU load and switches between frequency states,
while performance maintains maximum frequency, scaling
down during temperature throttling. Conversely, powersave
keeps the frequency at the minimum possible frequency state.
Changing the power governor in Linux requires root privileges.
However, an unprivileged user can read the frequency state file
(scaling_cur_freq).

There are three primary challenges for us to address:

o Although Linux covers the majority of devices, CPU-
Print must be OS-agnostic.

o A JavaScript-based web implementation is needed for
broader reach, but JavaScript’s sandbox restricts access
to system files like scaling_cur_freaq.

¢ Overcoming low-resolution clocks in browsers, which
were patched because of privacy concerns [1], [21].

We address all the challenges comprehensively. Measuring
the relationship between the DVFS governor and power and
frequency data is not trivial. We design our custom-clock for
CPU-Print to measure elapsed time of a fixed computation, as
this is directly related to the frequency and power usage of
the CPU, and is measurable within a browser at millisecond
resolution [10], [13]. We use a constant function in a loop to
approximate a fixed interval of time. We run the loop 1000



TABLE I
RESULTS OBSERVED ACROSS DIFFERENT CLASSIFIERS

‘ Base Model ‘ #O.f model params Accuracy ‘ F1 Score | Precision ‘ Recall ‘
(incl. classifier)
DTW N/A 0.6914 0.6918 0.6909 0.6926
MLP 2,181,505 0.8800 0.9474 0.9000 1.0000
FCN 33,090,433 0.8500 0.9455 0.8966 1.0000
ResNet [12] 8,255,297 0.5250 0.6885 0.5385 0.9545

times to get around the low resolution timer problem. The
clock runs concurrently with the power virus, collecting timing
values into an array, as the power-virus induces state switches
in DVFS. The power-virus forces scaling to higher frequency
as load per unit increases. The CPU cores draw more power
at higher frequency which leads to increased temperature and
faster computation. When the load per unit starts decreasing,
CPU cores starts drawing less power and the governor scales
to a lower frequency. There will be throttling due to the CPU
core’s thermal limitations. This forces the governor to scale.
All the scaling values adds to the fingerprint signal.

We position ourselves as the fingerprinter whose goal is to
extract unique and stable fingerprints from both homogeneous
and heterogeneous devices. In our threat model, the finger-
printer can run the power-virus on the user’s device via the
web, producing a series of timing values per sampling interval
up to 1 minute.

In this abstract, we show results from our in-the-wild
deployment. We collected 50,000 traces of multiple power-
viruses: step, sine curve, saw-tooth, inverse-saw-tooth and
delta with the same time period for each of the periodic
function. There were 225 unique devices with two or more
traces, which we used for fingerprint training and later for
testing. We collected a cookie as the ground truth. Table I
shows different statistics when using different classifiers. A
random classifier is our baseline as it will always have a
maximum accuracy of 0.500. We use DTW, 1D CNN (MLP),
FCN and ResNet to measure the similarity between the two
traces. While DTW is sufficient for device-type fingerprinting,
we use a ML-based classifier for device fingerprinting. The
accuracy of 1D CNN and FCN is fairly high, up to 88% for
the former, compared to a simple distance-based technique like
DTW and a more complex technique like ResNet.

Concretely, our contributions in this abstract are:

o A DVFS-based device fingerprinting technique.

o We collected in-the-wild data via a large-scale deploy-
ment of our technique and collected 50,000 traces across
225 unique devices and saw up to 88% fingerprinting
accuracy.

As for future work, our plan is to perform extensive in-lab
experiments for testing the robustness of CPU-Print.
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Problem Statement

e There is a growing restriction
against stateful identifiers due to
privacy concerns [1].

e \We need to design a new hardware-
based fingerprinting techniques with:
o Stateless
o Robust
o Stable
o Accessible from the user-space

Motivation

e Software-based fingerprinting

techniques are fast and but less
stable.

e However, they can have a high
false-positive rate in homogeneous
settings.

Flgure 1: Identlcal flngerprlnts usmg‘
Fingerprint.js across 2 homogeneous

systems.

Objective

e Exploit CPU frequency readings as
the fingerprint signal.

Challenges

e Platform-agnostic design.

e A JavaScript-based web
implementation

e Overcoming low-resolution clocks in
browsers.

Devices using DVFS

2University of Southern California

Background

e Modern-day operating systems have power governors.

o Default power governor on Linux is ondemand or schedutil.

e The frequency of the CPU cores is scaled based on the utilization.
e Higher utilization draws more power.

e This changes the frequency state of the CPU via voltage scaling.
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Figure 3: A plot with frequency values
of 3 different systems when sine
power-virus was being executed.

Figure 2: Theoretical demonstration of
a power-virus.

Results
mmmmm
0.6914 0.6918 0.6909 0.6926
MLP 2,181,505 0.8800 0.9474 0.9000 1.0000
FCN 33,090,433 0.8500 0.9455 0.8966 1.0000
ResNet 8,255,297 0.5250 0.6885 0.5385 0.9545

Table 1: Statistical results across different classifiers.
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Related Works

e Hardware-based fingerprinting:
o Clock-around-the-clock (CPU) [2]
o DRAWNAPART (GPU) [3]

o DF-SCA (DVFS) [4]

e Power side-channels
o PLATYPUS [5]

e Power side-channel + Fingerprint
o Qin et al. [6]: Website fingerprinting
o POWERFUL [7]: App fingerprinting

Contributions

e A new device fingerprinting technique.
e Large-scale in the wild deployment with

50,000 traces across 225 unique devices.
e Hierarchical fingerprinting.

Figure 4: A demonstration of a hierarchical
device type fingerprint tree.
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