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Abstract—Malware classification presents a unique challenge
for continual learning (CL) due to the daily influx of new samples
and the evolution of malware to exploit new vulnerabilities.
Sequential training using CL techniques could substantially
reduce training and storage overhead in the face of this massive
scale. In this work, we study five CL techniques applied to two
malware tasks, covering common incremental learning scenarios
such as domain and class incremental learning (IL). In addition,
we show our preliminary results of explored different replay
based CL approaches equipped for malware classification. Our
results indicate promise to study further in this direction.

Index Terms—malware analysis; catastrophic forgetting; con-
tinual learning;

I. INTRODUCTION

Machine learning (ML) models for malware classification
are currently trained in a static way to learn previously
observed samples with the expectation of generalizing to new
observed samples. However, the adversarial nature of malware,
coupled with the continuous evolution of benign software
(goodware), results in an inherently non-stationary problem.

For example, VirusTotal receives more than 1 million unique
software each day [1]. These accumulated daily feeds can
easily result in a dataset of billions of samples after only
a few years. The resultant dataset will not be independent
and identically distributed (IID), as there will be distributional
shifts. To adapt to the evolving data distribution over time,
the model must undergo regular retraining to ensure its ef-
fectiveness. Regrettably, the rapid creation of new malware
and goodware generates massive datasets, making them both
resource-intensive to maintain and challenging to train on.
Considering the practical challenges of training these models,
antivirus vendors face the choice of: (i) eliminating some older
samples from the training set, which may enable attackers
to reuse older malware rather than creating new ones; (ii)
reducing the training frequency, resulting in slower adaptation
to changes in the distribution; or (iii) investing significant
resources to consistently retrain using the entire dataset.

These challenges can be addressed with an ever-evolving
and intelligent ML system that is continuously trained to
adapt to changes in the data distribution without requiring
significant storage and computational overhead. Continual
learning (CL) is a branch of ML that aims to address those
goals, enabling incremental incorporation of new data and
adaptation to data distribution shifts without maintaining large
datasets or incurring very high training overhead [2], [3]. The

major challenge in training a model to learn continually is
catastrophic forgetting (CF) – a phenomena in which an ML
model forgets the previously learned knowledge [4].

In a CL training paradigm, the model M is presented with a
sequence of tasks t1, t2, ..., tN , where each task ti is associated
with a non IID data distribution p(x, y|ti). The corresponding
parameters of these tasks can be represented as θt1 , θt2 , ..., θtN .
The goal is to train M sequentially as the task appears so that
it can adapt to the new task tN while preserving its learning
up to the previous task tN−1.

In this work, we investigate the extent to which malware
classification models suffer from CF, and whether we can
address this using approaches from current CL research1. In
addition, we present our preliminary findings of a malware
data centric CL technique considering the properties of mal-
ware problem space.

II. METHODOLOGY AND RESULTS

A. CL Scenarios for Malware Classification

Using a large-scale benchmark malware dataset – EMBER
2018 [6], we show the investigation of two out of three widely
adapted CL scenarios [7] – domain incremental learning
(Domain-IL) and class incremental learning (Class-IL), con-
sidering the problem spaces of binary malware classification
and multi-class classification.

In Domain-IL, the model’s objective is to classify a new test
sample as malicious or benign. We partition our dataset into
monthly tasks for this binary malware classification problem,
reflecting the natural concept drift of both malware and
goodware due to their evolving capabilities and the release of
benign software. Our goal is to integrate new information in
each monthly incremental learning iteration while preserving
previous discriminative knowledge. In Class-IL, we exam-
ine malware family classification, assigning malware samples
to specific families based on their code base, capabilities,
and structure. For Class-IL, we incrementally include newly-
discovered families at each learning episode, expanding the
model’s capabilities in response to the ever-evolving landscape
of malware families. In this multi-class classification setting,
the base model starts with a non-trivial number of classes,
and new classes are added subsequently. Performance during

1This work includes materials from our previously published paper [5].



TABLE I
SUMMARY OF THE EXPERIMENTS. THE AVERAGE ACCURACY (Acc) AND
MINIMUM ACCURACY (Âcc) FROM ALL THE TASKS IN EACH EXPERIMENT.
RESULTS IN BOLD INDICATE ACCURACY VALUES CLOSER TO Joint THAN

None. ERROR RANGE IS OMITTED FOR RESULTS WITH LESS THAN 1.0
STANDARD DEVIATION.

Approach Method Domain-IL Class-IL
Acc Âcc Acc Âcc

Baselines None 93.1 91.3 26.6 09.2
Joint 95.9 93.2 87.7 85±2.5

Studied
Techniques

EWC 92.8 90.0 8.4 00.1
LwF 93.2 91.7 11.9 00.7
GR 93.2 91.6 26.9 09.3
BI-R 93.4 91.6 26.7 9.0
iCaRL - - 62.8 46±2.5

Ours

GRS-20% 94.4 93.8±1.1 85.5 82.2±1.8
GRS-50% 95.0±1.1 94.2±1.2 86.0 82.7±2.2
FRS-200/f 94.9 93.5±1.8 85.4 82.0±1.5
FRS-500/f 95.1 94.0±1.2 85.7 81.8±2.7
FRS-1000/f 95.3 93.9±1.6 - -
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Fig. 1. Domain-IL on EMBER:
Accuracy over time.
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Fig. 2. Class-IL on EMBER: Accu-
racy as the number of classes grows.

testing is evaluated based on all classes the model has been
trained on up to that point.

B. Model Selection, Implementation Details, and Baselines

In our experiments, we use a multi-layer perceptron (MLP)
model that we designed using selective hyperparameter tuning,
which achieves an AUC score of 0.995. For comparison, a
LightGBM model by [6] reports a state-of-the-art AUC score
of 0.996 on EMBER 2018.

For Domain-IL, we utilize goodware and malware samples
from 2018, excluding unknown samples, and focus on binary
classification across 12 months. In Class-IL experiments, we
use the top 100 malware families seen in the dataset in 2018
(out of a total of 2,900 families), and train the initial base
model with 50 classes.

We employ two baselines: None and Joint. None, which
serves as an informal lower bound, involves sequential training
of the model on new data without any CL techniques. Joint,
on the other hand, trains on each task using all of the data
accumulated so far. This serves as an informal upper bound.
The effectiveness of a CL technique is measured by its ability
to move accuracy from the lower bound to near the upper
bound.

C. Experimental Results

In this work, we show the study of five widely studied CL
techniques: Elastic Weight Consolidation (EWC) [8], Learning
without Forgetting (LwF) [9], Generative Replay (GR) [10],
Brain inspired replay (BI-R) [2], and Incremental Classifier
and Representation Learning (iCaRL) [11].

In addition, we present our findings on two replay based CL
techniques as part of this work – i) Global reservoir sampling
(GRS), and ii) Family-based reservoir sampling (FRS). In
replay-based CL, we replay samples of the earlier tasks based
on a memory budget by including some of the older samples

along with the new samples from the current task. GRS
randomly selects X-% of all the stored samples of the earlier
tasks and mixes those samples with the current samples to
revive the stability of the model on the earlier tasks. FRS, on
the other hand, randomly selects samples from each of the
family data pool based on a given memory budget.

We show the results of Domain-IL and Class-IL experiments
in Figure 1 and Figure 2, respectively. We show a summary
of the results of all the experiments in Table I. For GRS,
we only conduct experiments with replay rates of x = 20%
and x = 50%. For the experiments in FRS, we represent the
configurations as FRS-n/f where n ∈ {200, 500, 1000} for
Domain-IL and n ∈ {200, 500} for Class-IL.

To our surprise, our results indicate that none of our studied
CL techniques are effective to reduce CF in Domain-IL. In
Class-IL, iCaRL is the only performant method among the five
studied techniques. Note that iCaRL is designed for only the
Class-IL scenario, which is why there is no graph for iCaRL in
Domain-IL. Our analysis in the previous work [5] reveals that
the data distribution is much more complex in the malware
data compared to the image data like MNIST for which the
CL techniques are originally proposed. As such, these studied
techniques suffer to reduce CF in malware data.

In Domain-IL, FRS-500/f and FRS-1000/f configurations
perform very close to Joint performance with 95.1% and
95.2% average accuracy over all tasks, respectively. In Class-
IL, GRS-50% yields 96% average accuracy which is perfor-
mant among all the experiments. GRS-20%, FRS-200/f, and
FRS-500/f also perform significantly better compared to all
other techniques from prior work that we tested.

In summary, our simple replay-based CL techniques per-
formed significantly better than existing CL techniques from
the literature. This set of preliminary results warrant for a
more in-depth investigation towards effective CL techniques
that account for the unique properties of malware data.
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