
Poster: WarpAttack: Bypassing CFI through Compiler-Introduced
Double-Fetches [1]

Jianhao Xu∗†, Luca Di Bartolomeo†, Flavio Toffalini†, Bing Mao∗, Mathias Payer†
jianhao xu@smail.nju.edu.cn, {luca.dibartolomeo, flavio.toffalini}@epfl.ch, maobing@nju.edu.cn, mathias.payer@nebelwelt.net

State Key Laboratory for Novel Software Technology, Nanjing University∗, EPFL†

Abstract—Code-reuse attacks are dangerous threats that at-
tracted the attention of the security community for years. These
attacks aim at corrupting important control-flow transfers for
taking control of a process without injecting code. Nowadays,
the combinations of multiple mitigations (e.g., ASLR, DEP, and
CFI) drastically reduced this attack surface, making running
code-reuse exploits more challenging.

Unfortunately, security mitigations are combined with com-
piler optimizations, that do not distinguish between security-
related and application code. Blindly deploying code optimiza-
tions over code-reuse mitigations may undermine their security
guarantees. For instance, compilers may introduce double-
fetch vulnerabilities that lead to concurrency issues such as
Time-Of-Check to Time-Of-Use (TOCTTOU) attacks.

In this work, we propose a new attack vector, called
WarpAttack, that exploits compiler-introduced double-fetch
optimizations to mount TOCTTOU attacks and bypass code-
reuse mitigations. We study the mechanism underlying this
attack and present a practical proof-of-concept exploit against
the last version of Firefox. Additionally, we propose a
lightweight analysis to locate vulnerable double-fetch code
(with 3% false positives) and conduct research over six popular
applications, five operating systems, and four architectures (32
and 64 bits) to study the diffusion of this threat. Moreover,
we study the implication of our attack against six CFI imple-
mentations. Finally, we investigate possible research lines for
addressing this threat and propose practical solutions to be
deployed in existing projects.

1. Background

Most software running on today’s systems is written
in low-level languages like C or C++. As these languages
are prone to memory corruption bugs that often enable
attackers to launch powerful code execution attacks, the
applications need to be thoroughly tested to remove as many
bugs as possible. As testing is generally incomplete due to
state explosion, mitigations are added to the code to make
exploitation more challenging [2].

Widely deployed mitigations such as Address Space
Layout Randomization (ASLR), stack canaries, and data
execution prevention (DEP) lower the exploitability of bugs.
However, code-reuse attacks such as Return-Oriented Pro-

gramming (ROP) remain effective under all these mitiga-
tions. These attacks redirect control flow to execute legit-
imate instruction sequences in program memory for mali-
cious purposes.

Control-Flow Integrity (CFI) [3], widely recognized as a
key mitigation to stop code-reuse attacks, restricts control-
flow transfers to strictly follow some benign program execu-
tion. Specifically, CFI first statically computes the program’s
control-flow graph (CFG) and determines all legitimate tar-
gets of control-flow transfers. Then, CFI instruments the
code with checks to validate each control-flow transfer at
run-time. CFI is practical: CFI implementations are readily
available in production compilers and have been widely
deployed, with some trade-offs between granularity and
performance. For example, the Android ecosystem deployed
LLVM-CFI [4] in Android 9’s kernel [5], and Windows
applications are widely protected by Microsoft’s Control
Flow Guard [6].

Despite the advance of modern CFIs, they cannot stop
all the attacks. In practice, not all code may be protected
through CFI [7] since their precision is limited by the target
sets size. Still, the key advantage of CFI is that the size of
the target set is generally small (between many targets with
under ten targets and few targets at around 100 targets even
for complex applications) [8]. CFI is therefore believed to
practically stop code reuse attacks or, at least, make it almost
impossible to bypass.

Mitigations are generally implemented as compiler
passes (or, rarely, as static binary rewriting passes). How-
ever, compilers currently are unaware of security checks
inserted by mitigations and consider them just code that
undergoes the same optimizations as all non-privileged code.

2. WarpAttack [1]

In this work, we present WarpAttack: a novel attack
that bypasses strong anti-code-reuse mitigations and grants
arbitrary code execution to adversaries. Our attack exploits
a misalignment between CFI implementations and assump-
tions of C/C++ compilers when translating switch statements
to jump tables (or multiple checks against one target).
The CFI threat model assumes that adversaries can modify
arbitrary data including function pointers but not code.
Therefore, CFI implementations assume that a combination



of storing jump tables in read-only memory and bound
checking the indirect control flow transfer will sufficiently
protect the jump tables. However, compilers are unaware
of CFI’s security assumptions and optimize code, which
results in double fetch vulnerabilities and TOCTTOU attacks
between the bound check and the indirect jump. The code
for computing indirect jumps in switch statements often
follows this pattern: given a jump table and an index, the
program first fetches the index value to validate the bound
check against the jump table size, then, it fetches the index
value again for processing the actual jump. Since the index
is loaded (fetched) multiple times, an adversary may race
against the bound check and overwrite the index value
after the bound check itself, finally allowing arbitrary jumps
outside the jump table. Similar issues were investigated
by previous reports [9], but, so far, were considered a
concurrency bug.

Figure 1 illustrates the timeline of the attack. We use
x86/64 assembly-like pseudo code to represent the victim
code. Note that real victim code may be more complex but
should include all the components shown here.

 mov r1, [A]
 cmp r1, imm
 ; may mov [A'], r1
 ja 0xdef

 
 mov r2, [A]/[A']
 mov r2, [r3+ r2*4]
 add r2, r3
 jmp r2

 ;0xdef: default branch

Attacker

Rewrite A: ensure
not default branch

Rewrite A/A':
 let the jump fetch
address from B 

Rewrite B: 
address to the

malicious target

2

4

5

Memory

B: Controlled Object

1

1

3

A: Checked Object

A': Spilled Object

Jump Table

;0xdeadbeef: malicious 
             target

Figure 1. The timeline of exploiting the double-fetch to hijack control flow.
r1,r2,r3 means registers, imm means some random value and [A]/[A’]
means memory access of A or A’.

3. Evaluation

To evaluate our new attack WarpAttack, we imple-
ment (and release as open-source) a proof-of-concept attack
against Firefox to demonstrate WarpAttack is practical under
a realistic adversary model. Our PoC shows how to win
the race condition and take control of the victim program.
Additionally, we implement a lightweight binary analysis
to detect compiler-introduced double-fetches in widely used
C/C++ programs on multiple platforms (with a false-positive
rate of 3%). Our results show that (i) mainstream compilers
including Clang, MSVC, and GCC generate such victim
code patterns in sensitive situations, (ii) most CFI imple-
mentations are vulnerable to our attack, (iii) widely used
C/C++ programs like Firefox and Chrome present such vic-
tim code patterns; (iv) these code patterns can be found on
different platforms including Linux, Windows, and Mac OS
and cross-architecture (i.e., x86/64, ARM, MIPS, RISCV).
Finally, we discuss possible mitigations and propose future
research directions to cope with WarpAttack.

In summary, our contributions are:
• We introduce WarpAttack, a new attack to bypass code-

reuse mitigations and grant arbitrary code execution to
adversaries.

• We show a working proof-of-concept example of
WarpAttack against Firefox.

• We conduct a comprehensive research on compiler-
introduced double-fetch code samples in popular ap-
plications across multiple OSs and architectures.

• We perform a study of different compilers and CFI
implementations to demonstrate the magnitude of our
attack has real-world impact.

• We design (and implement) a new lightweight binary
analysis to detect victim code (that we release as open-
source).

4. Mitigation Options

The most direct way is to prevent compilers from pro-
ducing gadget code via options like -fno-switch-tables
(GCC). Another promising mitigation is to add dynamic
checks for every indirect jump including the switch ones.

References

[1] J. Xu, L. D. Bartolomeo, F. Toffalini, B. Mao, and
M. Payer, “Warpattack: Bypassing cfi through compiler-
introduced double-fetches,” in 44th IEEE International
Symposium on Security and Privacy (IEEE S&P 23),
2023.

[2] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok:
Eternal war in memory,” in 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 48–62.

[3] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti,
“Control-flow integrity,” in Proceedings of the 12th
ACM conference on Computer and communications se-
curity, 2005, pp. 340–353.

[4] L. team, “Clang 16.0.0git docu-
mentation: Control flow integrity,”
https://clang.llvm.org/docs/ControlFlowIntegrity.html,
2022.

[5] A. Docs, “Kernel control flow integrity,”
https://source.android.com/devices/tech/debug/kcfi,
2022.

[6] M. Docs, “Control flow guard for platform security,”
2022, https://docs.microsoft.com/en-us/windows/win32/
secbp/control-flow-guard.

[7] S. Mergendahl, N. Burow, and H. Okhravi, “Cross-
language attacks,” in Proceedings 2022 Network and
Distributed System Security Symposium. NDSS, vol. 22,
2022, pp. 1–17.

[8] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz,
S. Brunthaler, and M. Payer, “Control-flow integrity:
Precision, security, and performance,” ACM Computing
Surveys (CSUR), vol. 50, no. 1, pp. 1–33, 2017.

[9] F. Wilhelm, “Xen xsa 155: Double fetches in paravir-
tualized devices,” 2020, https://insinuator.net/2015/12/
xen-xsa-155-double-fetches-in-paravirtualized-devices/.

https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/
https://insinuator.net/2015/12/xen-xsa-155-double-fetches-in-paravirtualized-devices/

	Background
	WarpAttack warpattack
	Evaluation
	Mitigation Options

