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Abstract—Android aims to provide a secure and feature-
rich, yet resource-saving platform for its applications (apps). To
achieve these goals, the compilation to distributable packages
shrinks, obfuscates, and optimizes the code by default. As an
additional optimization, the Android Runtime (ART) nowadays
compiles the app’s bytecode to native code on the device instead
of executing it in the Dalvik VM. We study the effects of
these changes in the Android build and runtime environment on
the problem of calculating app similarity. We compare existing
bytecode-based tools to our novel approach of using the re-
compiled (and optimized) binary form.

We propose OATMEAL, an extensible framework to generate
reliable ground truth for evaluating app similarity approaches
and provide a benchmark dataset to the community. We built this
dataset from open-source apps available on F-Droid in various
configurations that optimize and obfuscate the bytecode.

Using this dataset, we show the limitations of existing Android-
specific bytecode analysis approaches when faced with the new
optimizing R8 bytecode compiler. We further demonstrate how
well BinDiff, a state-of-the-art binary-based alternative, works
in scoring the similarity of apps. With OATMEAL, we provide
the foundation for integrating and benchmarking further ap-
proaches, both for calculating the similarity between apps (based
on bytecode or binary code), and for evaluating their robustness
to evolving optimization and obfuscation techniques.

I. EVOLUTION OF THE ANDROID BUILD TOOLCHAIN

The Android operating system has seen many changes with
its yearly release cycle. One of the biggest is the replacement
of dx with the R8 [6] compiler, which creates Dalvik bytecode
from Java or Kotlin sources. While ProGuard [7] has been
supported as obfuscation and optimization pass for a long time,
the change has made it obsolete, incorporating its mechanisms
in the compiler and enabling them by default for new projects.
R8 also adds more optimizations and code shrinking to the
build process. The latter removes unused code from not just
the app, but also its included libraries.

Furthermore, with the Android Runtime (ART) [5], there
is an additional compilation step before apps are executed: It
compiles and optimized the Dalvik bytecode to native binary
code to speed up execution. Figure 1 shows an overview of the
lifetime of an Android app through these various build stages.

These changes in the app build process have repercussions
on existing Android code analysis tooling: in our research,
we focus on approaches for calculating the similarity between
apps. These approaches enable the detection of app clones,
malicious impersonification, and changes between versions of
an app, such as the application of security patches.

However, besides many approaches no longer being avail-
able, or failing to process modern APKs, the changes in the

build toolchain break the assumptions they are built on: The
assumption that the same method compiles in the same way
with the same signature, including its name, in two versions
of an app no longer holds for apps compiled with R8.

We surveyed app diffing tools that analyze the code of an
app statically, e.g., SimiDroid [11] and Elsim [9] for Dalvik
bytecode-based approaches and investigate how they fare on
R8-compiled bytecode against binary-based approaches, such
as BinDiff [13], applied to ART-compiled apps.

II. GENERATING A RELIABLE DATASET

For our study, we needed a dataset of apps with annotated
build settings. Ideally, the same apps are compiled with
various settings because most apps can be easily unpacked and
recompiled. A robust approach to calculating app similarity
should be stable regarding various optimization and obfusca-
tion settings, such as working with renamed identifiers.

Due to the lack of existing datasets in this area, we created
a benchmark dataset using the F-Droid OSS Market [3]. By
extending the build server and hooking into the build process,
we created a pipeline to generate reliable build information
for real-world apps, modify them, and create ground truth for
evaluations. We provide additional processing of APKs with
tools such as Redex [4] and ObfuscAPK [1] to study the effects
of different optimization and obfuscation settings. Finally, we
include tools to automatically compile the apps to binaries,
on physical Android phones, emulators, or cross-compilation
based on the Android Open Source Project.

We call this pipeline OATMEAL, and it currently produces
more than one thousand apps, of which half use R8 features
of shrinking, obfuscation, and optimizations.

III. PRELIMINARY RESULTS

In our experiments, we compare the recall and precision
of multiple bytecode- and binary-based approaches on sets of
apps that have been compiled with the advanced features of R8
en- or dis-abled, as well as further optimizations with Redex.
Since these tools typically output a single number between 0
(no similarity) and 1 (complete match), we expect them to be
robust against compiler settings and score high for apps that
are built from the same source code.

We included SimiDroid [11] and Elsim [2] in our analysis as
bytecode-based approaches. For binary-based approaches, we
included BinDiff [13] with Ghidra [12] with and IDA Pro [8],
as well as Diaphora [10]. Unfortunately, the run time of Elsim
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Figure 1: An Android app from source code to execution: Java and Kotlin source code and libraries are compiled into optimized
and obfuscated Dalvik bytecode. Native libraries written in C/C++ are compiled to binary ELF shared objects. During run
time, native libraries are directly loaded by ART, while Dalvik bytecode is compiled into OATs.

(multiple hours per app) and the disk space requirements of
Diaphora (multiple gigabytes per app) made them unusable.

Our experiments show, that calculating the binary similarity
between apps is comparable to available bytecode-based tools
and outperforms them when faced with optimization with
Redex. We also find Dalvik-based approaches struggle to
process about half of the apps, with or without the new R8
features. In contrast, virtually all apps could be compiled to
binaries, and all apps were successfully analyzed.

IV. FUTURE WORK

Besides the use case of binary similarity, OATMEAL pro-
vides all necessary metadata to evaluate library detection on
Android apps. Information gathered during the build process
can be used to verify which libraries and their versions are
used in an app.

To extend the utility of OATMEAL, it can be extended
to include additional apps from other sources or a curated
list of configurations for specific purposes. Because the build
server is aware of software repositories and has a powerful
configuration notation, any number of additional apps can be
integrated.

Last but not least, we only used binary tooling in its default
configuration and do not yet analyze the pre-compiled native
libraries included in the app. Optimizing settings or including
OAT-specific information can be used to improve the efficacy
of binary tooling further.

V. CONCLUSION

We proposed an extensible pipeline to compile apps to OAT
binaries, which any available binary tooling can analyze. We
selected BinDiff and SimiDroid, two state-of-the-art diffing
approaches that operate on binaries and bytecode, respectively,
as candidates to demonstrate the utility of our approach.

We required a robust ground truth of information about
the build process of an app to study the effects of different
optimizations and obfuscations. We extended the open-source
F-Droid build toolchain to create a dataset of more than one
thousand apps, complete with their actual build configurations.
shows that applying binary tools to Android app analysis can

We found that bytecode-based approaches, such as
SimiDroid, which depend on class, method, and variable
names, do not work well in the face of R8or other code-based
obfuscation. BinDiff performs comparable or better, which

bridge the gap between binary and bytecode analysis to take
advantage of mature approaches and the advances made by
both communities in the area of app diffing.

To further research in this area, we will provide all analysis
artifacts, including the source code and benchmark dataset.
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