Poster: Unsafe Rust — Conscious Choice
or Spiky Shortcut?

Sandra Héltervennhoff @, Philip Klostermeyer ©f, Noah Wohler ©%, Yasemin Acar/®*, Sascha Fahl/®%

TLeibniz University Hannover, Germany, {hoeltervennhoff, klostermeyer}@sec.uni-hannover.de
8CISPA Helmholtz Center for Information Security, Germany, {noah.woehler, sascha.fahl}@cispa.de
iGeorge Washington University, USA, acar@gwu.edu

Abstract—The Rust programming language features guaran-
tees regarding memory safety, which get enforced during compile
time. So called unsafe Rust partly lifts guarantees to enable
a programmer to write code which cannot be verified by a
compiler to be memory safe, thus, creating critical points during
development susceptible to serious security bugs. In this project,
we investigate the usage of unsafe Rust by conducting qualitative,
semi-structured interviews with Rust developers on (1) how the
process of coding unsafe Rust looks like, (2) whether they recon-
sider the usage of this critical (and potentially dangerous) part
of the language, and (3) how they verify the code’s correctness
and soundness.

The interviews coded so far show that the awareness of the
potential for security bugs, when using unsafe Rust, can be
considered high among participants, but also that there are still
misunderstandings about what unsafe Rust does technically. As
for help in writing secure unsafe Rust, no procedures were found
besides official documentation. Mostly, the lively exchange in
Rust communities and personal experiences help developers to
evaluate their unsafe code fragments.

Index Terms—Rust, Unsafe Code, Interview Study

I. INTRODUCTION

Rust is a more recently emerged multi-paradigm program-
ming language with its first stable release in 2015, designed
so that specific errors, such as memory and concurrency bugs,
are prevented. This concept seems well-received. The usage
of Rust has slightly increased in recent years, as seen in
the Most Popular Technologies section of the Stack Overflow
developer survey, and it has held the 1st place as the Most
Loved Language for six consecutive years nowﬂ However, not
all concepts or use cases can be implemented using secure
safe Rust code. As Rust also offers low-level programming
functionalities, developers have to resort to so-called unsafe
Rust to interact with components on a system- and hardware-
level, where the guarantees of the language cannot be ensured
anymore. In these unsafe code fragments, critical security
vulnerabilities can still arise if developers act carelessly. Ac-
companied by the increasing popularity of Rust, it is necessary
to closely examine how unsafe code is understood, used, and
verified for security. In this project, we conduct interviews to
learn about the developers’ mindset around unsafe code and to
understand what processes in connection to unsafe code look
like in real-life scenarios.

Uhttps://insights.stackoverflow.com/survey/2021

When starting functions, methods, or code blocks with the
unsafe keyword, the developer can use so-called “unsafe
superpowers’ that would otherwise be rejected by the com-
piler. Within these blocks, e. g., dereferencing pointers could
lead to undefined behavior and security issues at runtime.

The philosophy behind Rust is to put the responsibility
that comes with the usage of unsafe Rust into the hands of
developers to verify their code for correctness, safety, and
security and to insert appropriate documentation.

We structure our work into four main research questions,
examining several sub-questions in greater detail as follows.

e RQ1. How is unsafe code perceived and utilized? We
want to identify typical use cases of unsafe Rust, how
decisions about the usage of unsafe Rust are made, and
what aids developers in writing secure unsafe code.

e RQ2. Are safe and unsafe code understood correctly?
Following up, we want to understand how unsafe code is
perceived and what opinions about unsafe Rust exist.

e« RQ3. How is unsafe code verified for security/safety?
Here, we are interested to learn how testing and code
reviewing in Rust, specifically in unsafe parts, are carried
out. This also included tools used for these purposes.

e RQ4. What are the consequences when unsafe code is
used incorrectly? Lastly, we want to determine actual
experiences where unsafe code has led to troubles or
exploits during development or in a later stage of a
project’s life cycle.

II. METHODOLOGY

In this section, we present our approach for the conducting
the interviews, the recruitment process, and for the analysis of
the transcribed data.

A. Interview Procedure

To address the RQs, we decided to conduct semi-structured
interviews. The interviews are conducted online and offered
in German or English to reach more participants. We aim for
a maximum duration of one hour for each interview. After
each interview, we discuss the interview guide and make minor
adjustments, if appropriate, to improve its quality. We also
conducted three piloting interviews to verify that our guide is
suitable and that the RQs could be answered.

Zhttps://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

https://orcid.org/0000-0003-4284-0473
https://orcid.org/0000-0002-8829-6074
https://orcid.org/0000-0002-4172-9565
https://orcid.org/0000-0001-7167-7383
https://orcid.org/0000-0002-5644-3316
https://insights.stackoverflow.com/survey/2021
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

B. Recruiting

For the main interview, we searched for Rust developers
with at least some experience in using unsafe Rust. To identify
possible participants, we used the GitHub API to search
for contributors to repositories which can be found on the
“Awesome Rust’ list — a curated list of Rust repositories. We
restricted the search to developers whose contribution included
code fragments with unsafe Rust and who had a public contact
email address on their profile. This resulted in 860 possible
contacts. Of these 860, 50 people were randomly chosen and
were invited to our study, leading to seven interviews by the
time of writing. All participants were compensated with an
$80 Amazon voucher.

C. Analysis

For evaluating the data, we first transcribe the interviews
and code them in an open coding approach. Following the
pilot interviews, we established an initial codebook, containing
the labels for topics and themes that emerged during the inter-
views. In a first step, each interview is coded independently by
two researchers. During the second step, conflicts are resolved
and, if necessary, the codebook is adjusted. Currently, we are
coding the remaining interviews using this initial codebook.
We plan to contact more developers to create a more diverse
sample.

III. FINDINGS

In the following, we want to present a preliminary look
into early findings from our ongoing process of coding and
analyzing interview data. As a limitation, it has to be made
clear that these findings are hand-picked examples by the
authors, are by no means exhaustive and might be subject
to change in their relevance after we gain deeper insights
through more interviews. The results refer to the three pilot
interviews and the seven interviews conducted thereafter, from
which quotes were taken.

Unsafe Rust Perception and Understanding. When asked
how the participants would describe unsafe Rust in their own
words to understand how they perceive it, we received largely
varying answers, ranging from the existence of the specific
“unsafe superpowers” to the assumption that unsafe is “C
mode in Rust” and all checks are turned off. This suggests that
there still might be some misunderstanding of what exactly
happens within unsafe Rust and a knowledge gap between
developers.

Unsafe Rust Usage. A clear majority of the participants
generally try to avoid unsafe code if possible and try to use
safe Rust instead. One participant used unsafe code only for
the Foreign Function Interface because there is no alternative
to it. When confronted with the question in what situations
unsafe code could be preferable, performance was mentioned
but also situations where the criticality of the concerned code
passages was perceived as lesser or irrelevant: “I wouldn’t
want my unsafe code to run my pacemaker.”. Whenever unsafe

3https://github.com/rust-unofficial/awesome-rust

code cannot be avoided, good documentation and isolating
unsafe code into small functions up to whole external crates
could be identified as dominant strategies. Participants often
tried to provide a safe interface. The answers suggest a hesitant
but also reflected attitude around the how and when of using
unsafe Rust.

Guidance. Talking about policies, aid and guidelines, apart
from the official documentation, the RustonomicorE] was uti-
lized most often. Participants also asked questions in chan-
nels like Discord or Reddit. No project or employer-issued
standardized guidelines were mentioned. This suggests that
developers are often on their own when programming unsafe
code but know of channels they can turn to when in doubt.
This is also reflected in who decides when to use unsafe code
— our participants’ answers largely agreed in that they decide
it themselves.

Tooling. Regarding the tooling, developers tend to make a
more thoughtful and balanced use of additional tools from
the Rust toolchain, e. g., the linter tool Clipp the additional
interpreter MIRI@ which can be used to analyze unsafe Rust
code, or Cargo Denyﬂ to check their dependencies for security
issues. Most participants knew at least some of these tools,
however, they tended only to make use of them if the effort
seemed reasonable.

Misuse & Vulnerabilities. Only a few of our participants
were able to contribute when asked about past experiences
with the misuse of unsafe code so far. We found that bugs were
perceived to occur more often in unsafe code, but “misuse”
concerning unsafe code could only be observed once where
an actual advisory had been filed. “You just fill an advisory,
do a patch release [..] and you move on.” The general belief
was that, most times, security vulnerabilities do not have a
negative impact on the project if developers take care of the
advisories in time.

ACKNOWLEDGMENT

This research was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy — EXC 2092 CASA — 390781972.

4https://doc.rust-lang.org/nomicon/
Shttps://github.com/rust-lang/rust-clippy
Shttps://github.com/rust-lang/miri
https://github.com/EmbarkStudios/cargo-deny

https://github.com/rust-unofficial/awesome-rust
https://doc.rust-lang.org/nomicon/
https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/miri
https://github.com/EmbarkStudios/cargo-deny

	Introduction
	Methodology
	Interview Procedure
	Recruiting
	Analysis

	Findings

