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Abstract—Privacy-preserving machine learning (PPML) solu-
tions often use multi-party computation or client-assisted homo-
morphic encryption (HE) techniques, which require a substantial
communication overhead. In contrast, non-interactive solutions
are considered slow and are only practical for small neural
networks or those with limited security guarantees. We show that,
for the first time, it is possible to evaluate a large HE-friendly
SqueezeNet model on large images in a non-interactive setting
using HE with 128-bit security parameters and no reductions in
the number of layers. This evaluation takes only 4 minutes when
running on a GPU and 6 minutes when running on a CPU.

Index Terms—Fully Homomorphic Encryption, HEaaN,
CKKS, SqueezeNet, Privacy Preserving Machine Learning, Ma-
chine Learning Inference, Tile Tensors, HELayers

I. INTRODUCTION

Practical non-interactive privacy-preserving machine learning
solutions are useful when outsourcing sensitive data to a third-
party cloud environment. Such environments often require
adherence to privacy regulations such as the GDPR [1].
However, these solutions are hard to design and implement
because they cannot use standard multi-party computation
techniques. homomorphic encryption (HE) is one cryptographic
method that does not require extra communication beyond the
input and output.

HE is an encryption scheme that allows the evaluation of
any algorithm on encrypted data [2]. Common HE schemes
involve four methods: Gen, Enc, Dec, Eval. The Gen func-
tion generates a secret-key public-key pair. The Enc function
uses the public key to encrypt a message m, which can be a
vector m[s] of s integer elements, and returns a ciphertext. Its
“inverse” is the Dec function, which receives a ciphertext and
returns an s-dimensional vector. We distinguish between exact
HE schemes, where m = Dec(Enc(m)), and approximate HE
schemes such as CKKS [3], where Dec(Enc(m)) = m + e,
for a small error e.

The FEwval function receives a function and a vector of
ciphertexts, and evaluates the function on these ciphertexts.
Specifically, it allows us to perform the operations Add, Mul,
and Rot, which are defined as

Dec(Add(Enc(my), Enc(ms))
Dec(Mul(Enc(my), Enc(ms))
Dec(Rot(Enc(mi),n))[i] = mi((i +n)

):m1+m2
):ml*mg
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Figure 1: A typical flow for running a neural network (NN) over
HE spans over three entities: a model owner, a cloud server,
and an analyst. This work considers the cloud operation.

Using HE to evaluate complex functions that require
extensive computations is still considered slow and thus
impractical. For example, it would not be practical to evaluate
a classification algorithm that involves running a deep NN
model on encrypted data due to the lengthy time required for
inference. One reason for this is that when using HE, only a
limited number of operations are allowed on ciphertexts before
an expensive bootstrapping operation is needed. Recently, two
works demonstrated the use of HE without bootstrapping on
medium-size networks: CHET [4] uses SqueezeNet-CIFAR [5],
and HELayers [6] uses AlexNet [7]. All inference evaluations
run in less than 10 minutes on these networks.

Recently, the performance of the CKKS bootstrapping was
drastically improved, which allowed [8] to evaluate an even
larger network: ResNet-20 using CKKS in 10,602 seconds
(176 minutes) but with only 111.6 bits of security. In this
work, we combine the fast CKKS bootstrap implementation
of HEaaN [9] with the AI optimizations provided by the
HELayers library [6], [10] to achieve the first HE-Friendly full
SqueezeNet [11], [12] implementation with 128-bit security.
This network requires 40 multiplications, which is much more
than the ~ 20 multiplications that are required for the AlexNet
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Figure 2: An HE-Friendly SqueezeNet with one convolutional
layer, 8 fire layers, and 4 average pooling layers. It receives an
encrypted image and returns an encrypted vector to the user,
who decrypts it and performs the last Softmax layer to get the
classification results.

and SqueezeNet-CIFAR networks; thus, it requires the use of
bootstrap operations. Figure 2 demonstrates the HE-Friendly
SqueezeNet architecture. We also evaluated the network on
large images of size 224 x 224 x 3, which are larger than the
32 x 32 x 3 CIFAR-10 images used in other works. Our results
show that it only takes about 4 minutes to perform network
inference over encrypted data. To the best of our knowledge,
this is the first practical demonstration of a non-interactive
large NN being evaluated over encrypted data with 128-bit
security.

Threat model Our threat-model involves three entities: An
Al model owner, a cloud server that performs model inference
on HE encrypted data using the pre-computed Al model, and
an analyst that sends confidential data to the cloud for model
inference. See Figure 1 for an illustration. We assume that the
model owner allows the cloud to see its model but the users’
data remains private. In addition, any communication between
all entities is encrypted using a secure network protocol such
as TLS 1.3. Finally, we assume that the cloud is honest-but-
curious, i.e., it evaluates the functions provided by the model
owner and users without any deviation. Our threat model does
not consider privacy attacks, where the users try to extract the
model training data through the inference results.

II. EXPERIMENTS

For the experiments, we considered two platforms: 1) an
A100 SXM4 80 GB GPU on a server with an AMD®EPYC
7763 2.45GHz machine with 64 cores (128 threads) and 750
GB memory; 2) An Intel® Xeon® CPU E5-2699 v4 @
2.20GHz machine with 44 cores (88 threads) and 750 GB
memory.

We integrated HEaaN [9] into HELayers [6], which provides
us with a bootstrap implementation of CKKS [3] for CPUs
as well as for GPUs. We configured HELayers (and thus

HEaaN) with parameters that target 128-bit security. All the
reported results are the average of 10 runs. We used the trained
HE-friendly SqueezeNet model from [12]; this model has an
accuracy of 82% when running on datasets with encrypted
images of size 224 x 224 x 3.

On platform 1, initializing the HE context took 3 seconds and
it took 55 seconds to load the model. These pre-computation
steps can be cached and used for future inference operations.
The inference operation itself took 4.07 minutes and used 60
GB of RAM. On platform 2, the initialization and loading time
took 5 and 21 seconds, respectively, and the inference operation
took 6 minutes. On platform 2, we also configured HELayers
to run a batch of 16 samples. Here, the inference operation
took 39 minutes with an amortized latency (throughput) of
only 2.3 minutes.

Our work demonstrates that using non-interactive HE for
large tasks is practical. In the future, we aim to continue and
test the practicality of non-interactive HE-based solutions on
even deeper architectures.
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