
Poster: Scientific Comparison on Accuracy and
Scalability of Cryptographic API Misuse Detection

Sharmin Afrose1, Ya Xiao1, Sazzadur Rahaman2, Barton P. Miller3, Danfeng (Daphne) Yao1
1
Computer Science, Virginia Tech, Blacksburg, VA

2
Computer Science, University of Arizona, Tucson, AZ

3
Computer Science, University of Wisconsin-Madison, Madison, WI

sharminafrose@vt.edu, yax99@vt.edu, sazz@cs.arizona.edu, bart@cs.wisc.edu, danfeng@vt.edu

Abstract—Studies showed that misuses of cryptographic APIs

are common in real-world code. To detect misuses, several

open-sourced and commercial tools are developed for screening

Java programs. We develop two comprehensive benchmarks

(CryptoAPI-Bench, ApacheCryptoAPI-Bench) that enable the

first scientific in-depth comparison on accuracy and scalability

of misuse detection. CryptoAPI-Bench contains 181 unit test

cases covering basic cases, as well as complex cases (i.e., in-

terprocedural, field sensitive, multiple class test cases, and path

sensitive cases). The ApacheCryptoAPI-Bench consists of 121

cryptographic cases from 10 Apache projects. Both benchmarks

include correct test cases for testing false-positive. We evaluate

four tools, namely, SpotBugs, CryptoGuard, CrySL, and another

tool (anonymous) using both benchmarks. We present their

performance and comparative analysis. The ApacheCryptoAPI-

Bench also examines the scalability of the tools. Our benchmarks

are beneficial for advancing state-of-the-art solutions in the space

of misuse detection.

Index Terms—Cryptographic APIs, Benchmarks, Java

I. INTRODUCTION

Various studies have shown that a vast majority of Java and
Android applications misuse cryptographic libraries and APIs,
causing devastating security and privacy implications [1]–
[5]. The prominent causes for cryptographic misuses are the
deficiency in understanding of security API usage [2], [6],
complex API designs [6], [7], the lack of cybersecurity train-
ing [2], insecure code generation tools and insecure/misleading
suggestions in Stack Overflow [2], [8]. The reality is that
most developers, with tight project deadlines and short prod-
uct turnaround time, spend little effort on improving their
knowledge or hardening their code for long-term benefits [9].
Recognizing these practical barriers, automatic cryptographic
code generation, and misuse detection tools [3] play a sig-
nificant role in assisting developers with writing and main-
taining secure code. The security community has produced
several impressive static (e.g., CryptoLint [1], CrySL [10],
FixDroid [11], MalloDroid, CryptoGuard [3], Parfait [12])
and dynamic code screening tools (e.g., Crylogger, SMV-
Hunter, and AndroSSL) to detect API misuses in Java. The
static analysis does not require a program to execute, rather
it is performed on a version of the code (e.g., source code,
intermediate representations or binary). Many abstract security
rules are reducible to concrete program properties that are
enforceable via generic static analysis techniques [3].

To advance and monitor the scientific progress in gener-
ating effective tools, a mechanism for comparative studies is
required. Unfortunately, for detection of cryptographic API
misuses, no suitable mechanism or benchmark exists. Such a
benchmark needs to have several requirements: cover a wide
range of misuse instances, cover interesting program properties
(e.g., flow-, context-, field-, path-sensitivity, etc.), written in
easily compilable source codes so that both source code and
binary code analysis tools can be easily evaluated.

None of the existing benchmarks follows these criteria
(e.g., DroidBench, Ghera). For example, DroidBench only
contains binaries. Ghera has sources of provided Android
apps. However, both DroidBench and Ghera barely cover
cryptographic API misuses.

Our contribution is to develop two benchmarks [13], [14].
First, We develop a benchmark named CryptoAPI-Bench that
utilizes various interesting program properties (e.g., field-
, context-, and path-sensitivity) to produce a diverse set
of test cases. We also provide another benchmark named
ApacheCryptoAPI-Bench for checking the scalability property
of the cryptographic vulnerability detection tools. We run
CryptoAPI-Bench and ApacheCryptoAPI-Bench on four static
analysis tools (i.e., SpotBugs [15], CryptoGuard, CrySL, and
Tool A (anonymous) and perform a comparative analysis of
these tools.

II. CRYPTO MISUSE CATEGORIES

In this section, we discuss 5 groups of 18 Java crypto-
graphic API misuse categories. We got insights into these
misuse categories from previous literature, NIST documents,
and other blogs. We describe reasons for vulnerability and
possible security solutions for these misuse categories. The
considered misuse groups (categories) are: Predictable secrets
(cryptographic key, password in PBE, password in KeyStore,
credentials in string), vulnerability in SSL/TLS (hostname
verifier, certificate validation, SSL socket, HTTP protocol),
predictable PRNGs (predictable random number generator,
seed in PRNG), vulnerable parameters (salt in PBE, mode of
operation, initialization vector, iteration in PBE), vulnerable
algorithms (symmetric ciphers, asymmetric ciphers, crypto-
graphic hash, cryptographic MAC)



TABLE I
EVALUATION RESULT ON CRYPTOAPI-BENCH AND

APACHECRYPTOAPI-BENCH SHOWS TOOL’S PERFORMANCE ON SIX
COMMON VULNERABILITY RULES. PREC. AND REC. STANDS FOR

PRECISION AND RECALL. THE VALUES ARE SHOWN IN PERCENTAGE.

Tools CryptoAPI-Bench ApacheCryptoAPI-Bench
Basic Cases Advanced Cases

Prec. Rec. Prec. Rec. Rec.
SpotBugs 81.25 92.86 0.00 0.00 73.68
CryptoGuard 100.00 100.00 83.33 95.59 78.95
CrySL 58.82 71.43 55.56 58.82 89.47
Tool A* 100.00 92.86 52.00 19.12 78.95

III. DESIGN OF BENCHMARKS

CryptoAPI-Bench: In this section, we present the design
of the CryptoAPI-Bench. We manually generate 181 unit test
cases guided by 18 types of misuses. We divide all test
cases into two types, i.e., basic cases and advanced cases that
incorporate possible variations in the perspective of program
analysis to detect cryptographic vulnerability.

ApacheCryptoAPI-Bench: We include the early version of
real-world large 10 Apache projects to check the scalability
property of different tools. The spark project is the largest
among 10 considered projects containing 311,856 lines of
code. Deltaspike contains the lowest number of lines of code
(i.e., 5,116 LoC).

We enlist 121 test cases in ApacheCryptoAPI-Bench.
Among them, 79 are basic cases, and 42 are advanced test
cases. We detect 88 cryptographic misuses, i.e., true positive
alerts. Regarding true negatives, we consider only the cases
where a tool shows the case as a false alert. With this
consideration, we show 33 true negative cases.

IV. EVALUATION

Performance Evaluation: Our experimental evaluation re-
vealed some interesting insights. For complex cases, special-
ized tools (e.g., CryptoGuard, CrySL) detect more crypto-
graphic misuses and cover more rules than general-purpose
tools (e.g., SpotBugs, Tool A). Currently, none of these tools
supports path-sensitive analysis. In the real world codes, the
number of basic cases is much higher than advanced cases.

Fig. 1. The runtime of CryptoGuard and CrySL during analyzing Apache
projects. Star (*) symbol indicates that the analysis was unsuccessful.

Runtime: Fig. 1 shows the line of code of Apache projects
and runtime for CryptoGuard and CrySL. For Tool A and

SpotBugs, we use the web version, therefore, we cannot
calculate their original runtime for comparison. Among the 8
successful analyzed projects, we find the average runtime for
CrySL is 14.64 seconds and CryptoGuard is 11.46 seconds.
For the largest Apache project Spark (LoC: 311,856), Cryp-
toGuard successfully analyzes in 88.68 seconds and CrySL
shows the failure of analysis report after 46.84 seconds.
Overall, SpotBugs and CryptoGuard successfully analyze all
10 Apache projects.

V. CONCLUSION

Scientific, reproducible, and in-depth comparisons are es-
sential components. In this paper, we present CryptoAPI-
Bench and ApacheCryptoAPI-Bench to evaluate the accuracy,
scalability, and security guarantees of various cryptographic
misuse detection tools.

REFERENCES

[1] M. Egele, D. Brumley, Y. Fratantonio et al., “An Empirical Study of
Cryptographic Misuse in Android Applications,” in ACM Conference

on Computer and Communications Security, CCS’13, 2013, pp. 73–84.
[2] N. Meng, S. Nagy, D. Yao et al., “Secure Coding Practices in Java:

Challenges and Vulnerabilities,” in International Conference on Software

Engineering, ICSE’18, May 2018.
[3] S. Rahaman, Y. Xiao, S. Afrose et al., “CryptoGuard: High Precision De-

tection of Cryptographic Vulnerabilities in Massive-sized Java Projects,”
in ACM Conference on Computer and communications security, CCS’19,
Nov. 2019, pp. 2455–2472.

[4] M. Islam, S. Rahaman, N. Meng et al., “Coding practices and recom-
mendations of spring security for enterprise applications,” in 2020 IEEE

Secure Development (SecDev), 2020, pp. 49–57.
[5] Y. Xiao, M. Frantz, S. Afrose et al., “Tutorial: Principles and practices of

secure cryptographic coding in java,” in 2020 IEEE Secure Development

(SecDev), 2020, pp. 5–6.
[6] Y. Acar, M. Backes, S. Fahl et al., “Comparing the Usability of

Cryptographic APIs,” in IEEE Symposium on Security and Privacy,

SP’17, San Jose, CA, USA, May 22-26, 2017, pp. 154–171.
[7] S. Nadi, S. Krüger, M. Mezini et al., “Jumping Through Hoops: Why

Do Java Developers Struggle with Cryptography APIs?” in International

Conference on Software Engineering, ICSE’16, 2016, pp. 935–946.
[8] Y. Acar, M. Backes, S. Fahl et al., “You Get Where You’re Looking

for: The Impact of Information Sources on Code Security,” in IEEE

Symposium on Security and Privacy, SP’16, San Jose, CA, USA, May

23-25, 2016, pp. 289–305.
[9] H. Assal and S. Chiasson, “Security in the Software Development

Lifecycle,” in Fourteenth Symposium on Usable Privacy and Security,

SOUPS’18, 2018, pp. 281–296.
[10] S. Krüger, J. Späth, K. Ali et al., “CrySL: An Extensible Approach

to Validating the Correct Usage of Cryptographic APIs,” in European

Conference on Object-Oriented Programming, ECOOP’18, 2018, pp.
10:1–10:27.

[11] D. C. Nguyen et al., “A Stitch in Time: Supporting Android Devel-
opers in Writing Secure Code,” in ACM Conference on Computer and

Communications Security, CCS’17, 2017, pp. 1065–1077.
[12] Y. Xiao, Y. Zhao, N. Allen et al., “Industrial Experience of

Finding Cryptographic Vulnerabilities in Large-Scale Codebases,”
Digital Threats, dec 2021, just Accepted. [Online]. Available:
https://doi.org/10.1145/3507682

[13] S. Afrose, Y. Xiao, S. Rahaman et al., “Evaluation of Static Vulnerability
Detection Tools with Java Cryptographic API Benchmarks,” IEEE

Transactions on Software Engineering, pp. 1–1, 2022.
[14] S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A Comprehen-

sive Benchmark on Java Cryptographic API Misuses,” in 2019 IEEE

Cybersecurity Development (SecDev), 2019, pp. 49–61.
[15] “SpotBugs: Find Bugs in Java Programs,” https://spotbugs-.github.io/,

online; Last accessed: Dec 3, 2020.


