
Poster: Privacy-preserving Neural Network with
Functional Encryption

Prajwal Panzade
Department of Computer Science

Georgia State University
Atlanta, USA

ppanzade1@student.gsu.edu

Daniel Takabi
Department of Computer Science

Georgia State University
Atlanta, USA

takabi@gsu.edu

Abstract—The increasing need to train machine learning mod-
els on massive datasets has led to privacy and security problems.
The researchers deal with such privacy problems using various
privacy-preserving machine learning (PPML) techniques such
as differential privacy, secure multi-party computation (SMC),
fully homomorphic encryption (FHE), and recently functional
encryption (FE). However, very little focus is given to FE-based
PPML. This work presents a complete PPML pipeline that
successfully performs training and inference on the encrypted
data using functional encryption. We use the function-hiding
inner product encryption (FHIPE) and inner-product function
encryption (IPFE) for designing the secure activation function.
Our results show successful training on the MNIST dataset with
an overall accuracy of 93% and increased speedup compared to
previous work.

Index Terms—Functional Encryption, Function Hiding Inner-
product encryption, Privacy-preserving Machine Learning, Se-
cure Activation

I. INTRODUCTION

The advancement of machine learning in computer vision,
natural language processing, and speech processing has re-
sulted in an abundance of remarkable applications that have
become an integral part of people’s lives. Today, many real-
world machine learning applications rely on a cloud computing
environment, following the concept of machine learning as
a service (MLaaS). Cloud-based data and machine learning
services are being adopted by many highly regulated firms
and organizations, including banks, governments, insurance
companies, and healthcare. As a result of this advancement,
there is an increased requirement for secure and private
computing solutions that protect data and model privacy in
machine learning applications. In light of this, researchers are
paying close attention to privacy-preserving machine learning
(PPML). The PPML aims to address data and model privacy
issues in the machine learning training to deployment stages.

In recent years, Secure Multiparty Computation and Fully
homomorphic encryption have been prevalent approaches to
PPML. Similar to homomorphic encryption, functional en-
cryption has been emerging day by day. Most of the works
based on Fully homomorphic encryption and functional en-
cryption support inference on encrypted data. However, very
little attention is given to the training on encrypted data [1]–
[3]. Xu et al. in [4] proposed a method to train a deep neural

network using functional encryption with 95.49% of accuracy
but the training time required by their model is 57 hours. In
this work, we focus on reducing the training time required by
the functional encryption-based neural network.

II. FUNCTIONAL ENCRYPTION

Functional encryption is a generalization of public-key
encryption that allows a key holder to compute a particular
function of encrypted data using constrained secret keys [5].
Here, this function is called functionality. e.g., an FE scheme
may be particularly designed to compute inner products; in
this case, the functionality becomes an inner product. In the
FE scheme, a key management authority with a master secret
key generates a secret key skfe; a decryptor can use that to
compute a function on an encrypted message X. An FE scheme
consists of four algorithms Setup, Encrypt, KeyDerivation, and
Decrypt. Setup generates the initial public and private keys.
Encrypt is used for encrypting the message. KeyDerivation
provides the key based on functionality, and finally, decrypt
is used for decryption. Our work uses two different functional
encryption schemes namely inner-product functional encryp-
tion (IPFE) [6] and function-hiding inner product encryption
(FHIPE) [7] respectively for secure activation computation.

III. THE PROPOSED METHOD

Fig. 1 depicts our proposed method. The input layer consists
of an encrypted vector of N elements. If the input data fed to
the neural network is not vectorized, it must be vectorized.
For example, if an input is a grayscale image, it should be
flattened to a vector. Then, in the first hidden layer, we use
our secure activation function called SecureReLU proposed
in our previous work in [8]. We call it secure as it does
ReLU operation and produces the results without having
access to inputs in plain format. We consider the example
of ReLU as it is the widely used activation function in the
real world. Our approach can also support other activation
functions by changing the activation after the inner-product
operation. SecureReLU function takes the input encrypted
vector X encrypted using FHIPE or IPFE, weight matrix W,
and a bias term. SecureReLU returns the results equivalent
to ReLU(WT X+b), which usually happens in the activation
functions in modern neural networks. So, the SecureReLU



activation function looks like:
A = ReLU(skfe(W) * Encrypt(X) + b )
Here, the internals of the ReLU function are secured by
either inner-product functional encryption or by function-
hiding inner product encryption. IPFE or FHIPE is mainly
used for computing products between weight matrix and vector
X. Here, X is encrypted with mpk (master public key), and
access to the result, i.e., the product of W and X, is given by
using the strength of FE. We detail the working of encryption
and SecureReLU function in Algorithm 1 and Algorithm 2,
respectively. In the process of the first activation function in the
forward propagation, SecureReLU is used. In the later stages,
the processes may occur similar to regular neural networks.
Similarly, the backpropagation is made secure by computing
the inner products using FE.

Fig. 1. Overview of Privacy-preserving Neural Network

Algorithm 1: FEncrypt
Input: X
Output: Ct
for i← 0 to X.size do

Generation of mpk and msk by key management
authority
Cti← Encrypt(mpki, X)

return Ct

Algorithm 2: SecureReLU
Input: Ct, W, b
Output: ReLU(W.X + b)
for i← 0 to W.size do

skfe.i ← KeyDerivation(mski,W.i)
prod.i ← Decrypt(Cti, skfe.i, W.i)
result.i ← ReLU(prod.i + b)

return result

IV. IMPLEMENTATION AND RESULTS

We implement our methodology in Python. We take ad-
vantage of many predefined libraries in Python and C. We
use NumPy for all the scientific calculations. We extensively
use CiFEr library [9] proposed by Marc et al. for func-
tional encryption-related computations. Based on the speedup
achieved in our previous work in [8] for IPFE and FHIPE, we
implement a complete machine learning pipeline for training
a machine learning model shown in Fig. 1 on the MNIST
dataset. Our implementation based on IPFE achieves 93.14%
accuracy, and the training time required is 2 hours. Our other
implementation based on FHIPE achieves 92.97% accuracy
with a training time of 26 hours. Please note that the cryp-
tographic computations are very complex in terms of time,
so the training time required is more than the regular neural
networks. However, compared to the previous work in this
area, our IPFE-based implementation achieves 28X speedup,
and the FHIPE-based implementation achieves 2X speedup, as
shown in Table I.

TABLE I
ACCURACY AND TRAINING TIME

Method Training time (hrs) Accuracy Epoch
Xu et al. [4] 57 95.49 % 2

Ours (FHIPE) 26 92.97 % 2
Ours (IPFE) 2 93.14 % 2

The accuracy achieved by our work is slightly lower than
that of earlier work in this field; nevertheless, the training time
required by our implementation is significantly shorter. In our
future work, we will work on reducing the training time and
improving the accuracy of the machine learning model.
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