
POSTER: PLUGINPERMCHECK: Preventing
Permission Escalation in App Virtualization

Shou-Ching Hsiao∗ and Hsu-Chun Hsiao∗
∗National Taiwan University, Taipei, Taiwan

d10922007@ntu.edu.tw, hchsiao@csie.ntu.edu.tw

I. INTRODUCTION

App virtualization provides the host app with the ability
to load ordinary apps inside its process. These loaded apps,
called plugin apps, execute with the identity of the host app,
which is transparent to Android OS. Popular host apps, like
Dual Space and Parallel Space, have more than 100 million
downloads on Google Play. The most prevalent application
is supporting mobile users to run multiple instances of the
same app simultaneously for logging in to different accounts.
However, while such a new paradigm brings convenience to
users, it also leads to additional security issues. To support
permission requirements of plugin apps, the host app over-
claims permissions in advance. Since plugin apps and the host
app share the same user ID (UID), plugin apps can utilize
permissions of the host app even without any permission
declaration, causing the opportunity of permission escalation
attack. A malicious plugin app can evade app vetting or mal-
ware detection that uses declared permissions as an important
indicator. Worse still, an attacker can be more stealthy by
deferring the malicious behaviors until run-time permission
has been granted to the host app. As the current UID-based
permission control is insufficient to check permissions in the
context of app virtualization, we aim to provide a solution
that can prevent permission escalation attacks while allowing
normal execution of benign plugin apps.

Previous work proposes defense for benign plugin apps
to prevent execution inside the host app [3, 1]. However,
merely aborting the execution does not fulfill our purpose
since users can no longer execute these plugin apps. Our
research is the first to provide an actionable solution for
users to prevent such attacks while still preserving normal
functionalities. We present PLUGINPERMCHECK that checks
the plugin’s permissions based on the process ID (PID) and
provide the following desired properties: (1) effectiveness of
blocking undeclared permissions; (2) acceptable overhead; (3)
no requirement for pre-configuring host apps and plugin apps;
and (4) supporting a variety of apps and OS versions.

To achieve these properties, our system needs to overcome
the following challenges. First, unlike UID, which is fixed
unless an app is reinstalled, PID is susceptible to change.
Our system updates the PID for each plugin app to accom-
plish effective permission checking. Second, the overhead of
additional checking is inevitable. We need to minimize the
latency by only applying our system to plugin apps executing
in the host app. Third, to be freed from pre-configuration, our

system should identify these targets at run-time and extract the
information before any permission request. This also enhances
the support of a wide range of plugin apps. Fourth, because
API-permission mappings vary with different OS versions, we
need to dynamically obtain the API-corresponding permissions
from the currently executing system instead of relying on a
hard-coded API-permission table statically.

II. BACKGROUND AND THREAT MODEL

A. App Virtualization
The host app acts as a proxy layer to intercept and wrap

system calls from plugin apps and communicates with the
Android OS on their behalf. By doing so, the host app and
plugin apps share the same UID and thereby equal permission
sets and resources. Since Android OS does not know the
existence of plugin apps, the host app helps plugin apps
complete launching, loading, and execution. While launching
plugin apps, intent wrapping [4] is a common trick to pass
the verification of Activity Manager Service (AMS), where the
host app extracts the plugin component from one intent before
saving the same component inside another intent’s field.

Originally, app virtualization was designed for hot-patching
or modular development purposes, where the same party
develops the host app and plugin apps. However, an increasing
trend has been observed to utilize the host app as a platform,
encapsulating various plugin apps from different developers.
This unintended usage of app virtualization has brought new
security issues, especially when the host app lacks proper
permission control for plugin apps.

B. Threat Model
We consider an attacker developing a malicious app that

aims to conduct permission-required malicious behaviors in-
side a typical host app.

Permission Escalation. The attacker’s goal is to abuse high-
risk permissions without being detected. The attack will be
easily detectable if the attacker declares such permissions in
the app’s manifest file or asks for user granting in run-time.
Thus, to evade app vetting, the attacker can manipulate the
feature of ”shared UID,” abusing the host app’s permissions
with null permission declaration. Also, to avoid raising user
suspicion, the attacker can probe if the host app has already
been granted permission through checkSelfPermission.
Once the permission has been granted, the attacker can suc-
cessfully escalate permission, over which users have neither
information nor control.



We test 20 host apps collected from Google Play and find
that all of them are vulnerable to such attacks, including
dominant ones with more than 100 million downloads. Even
worse, some of the host apps proactively request permissions
exactly during the first launch so that plugin apps can stealthily
escalate run-time permissions more easily.

III. SYSTEM DESIGN

The core idea of PLUGINPERMCHECK is to identify the
source of permission requests through PID and determine if
the permission should be blocked through PID’s corresponding
permission sets. Our system consists of three main modules.
When launching plugin apps, the first and second modules
detect app virtualization and obtain information on user-loaded
plugin apps. During permission-required system calls, the last
module enforces the permission policy.

A. Detecting App Virtualization

This module detects the host app and user-loaded plugin
apps through intent wrapping and then records their package
names and signing certificates. Since some host apps may
have multiple packages, we use certificates to link them
to the same host app. We monitor the two steps of intent
wrapping by first logging the plugin component returned by
Intent.getComponent followed by comparing it to the
input of component saving APIs, like setType, setData,
putExtra, and putExtras. Upon matching, we identify
the current package as the host app and the package of the
saved component as the plugin app. These detecting results
are used in the next module.

B. Parsing Plugin Apps

This module identifies the plugin app instantiated in the host
app process and then extracts the plugin’s PID and the declared
permission sets. Utilizing the package name and certificates
from the first module, we inspect if the current instance exe-
cuting Instrumentation.newApplication belongs to
the host app and the return object belongs to the plugin app.
To avoid unnecessary overhead, checking the host app package
can filter out the same dual-instance app launching in the
Android OS; and checking the plugin app package can filter
out the non-plugin process in the host app. As the Application
object of every process is instantiated at process creation,
we can update the corresponding PID of each plugin app
accurately every time this parsing module is triggered.

C. Checking Permission

To check permission for plugin apps, we monitor the
permission requests at the system service, exactly the invoke of
AMS.checkComponentPermission so that permission
checking from apps and system service are both applied. Then,
our system obtains PID and the requesting permission from
method parameters and enforces the following permission
policy—if the permission is not in the PID’s corresponding
declared permission set, the permission should be denied.

TABLE I
RESULTS OF EFFECTIVENESS

Plugin App Removed Permissions Dual App Dual App† Dual Space Dual Space†

N R N R N R N R

com.waze LOCATION ! ! ! % ! ! ! %

com.twitter.android CAMERA ! ! ! % ! ! ! %

STORAGE ! ! ! % ! ! ! !

com.google.android.apps.nbu.files STORAGE ! ! ! % ! ! ! %

com.simpler.dialer PHONE ! ! ! % △ △ ! %

CONTACTS ! ! ! % △ △ ! %

net.sourceforge.opencamera CAMERA ! ! ! % ! ! ! %

com.hitrolab.audioeditor MICROPHONE ! ! ! % ! ! ! %

†With PLUGINPERMCHECK applied. N: Normal. R: Repackaged.
!: Normal functionality. %: Unable to use the functionality.
△: Other exceptions. Dual App: com.ninetyplus.dualapp.
Dual Space: com.ludashi.dualspace.

IV. IMPLEMENTATION AND EVALUATION

Implementation. For demonstration purpose, a prototype of
PLUGINPERMCHECK tool is implemented via hooking using
the LSPosed Framework [2]. This framework dynamically
instruments Android OS so that users need not re-flash the
mobile system. While our prototype tool can act as a quick
fix for users, Android OS can also adopt our design to address
permission escalation attacks in app virtualization.

Evaluation. We evaluate our prototype on an ASUS Zen-
fone M2 (X01AD) running Android 9.0.

1) Effectiveness: To simulate permission escalation attacks,
we use repackaging techniques to generate the adversarial
samples by removing permission declarations in the plugin
app’s manifest file. The results in Table I show that no false
positive is generated by misidentifying a normal plugin app
as a permission escalated case. On the other hand, we also
show that undeclared permissions of repackaged apps can be
intercepted by our system, except for one false-negative case
of the storage permission. An initial guess is that the external
storage permission is enforced by the kernel in Android 9.0.
Other exceptions, such as abnormal Google Play services in
host apps, are not caused by our system.

2) Overhead: We use the top command to gauge the com-
putational overhead of installing, launching, and executing a
plugin app. We add up the CPU utilization of these operations
within a 60-second window. On average, our tool consumes
1.68% more CPU per second.

V. CONCLUSION AND FUTURE WORK
In this work, we propose a PID-based plugin permission

checking system to prevent permission escalation attacks in
app virtualization. Future work includes (1) kernel-level per-
mission enforcement and (2) a larger-scale evaluation.

REFERENCES

[1] Deshun Dai et al. “Parallel Space Traveling: A Security
Analysis of App-Level Virtualization in Android”. In:
ACM SACMAT. 2020.

[2] LSPosed. URL: https://github.com/LSPosed/LSPosed.
[3] Tongbo Luo et al. “Anti-plugin: Don’t let your app play

as an Android plugin”. In: Blackhat Asia (2017).
[4] Luman Shi et al. “VAHunt: Warding Off New Repack-

aged Android Malware in App-Virtualization’s Cloth-
ing”. In: ACM SIGSAC CCS. 2020.


