
Poster: Are Trusted-Types the Panacea for XSS?

Abstract—Cross-Site Scripting (XSS) is one of the most preva-
lent vulnerabilities present in modern Web applications. To
mitigate the effect of this markup injection vulnerability, the
Content Security Policy (CSP) has been introduced. However,
research has shown that CSP fails its task. Developers face a
plethora of roadblocks during the deployment process, and third
parties often mandate the usage of lax and trivially bypassable
CSPs. Especially dangerous JavaScript sinks such as eval, and
HTML creating sinks like innerHTML are often used by third-
party code. In order to mitigate the threat that is introduced
by the usage of those APIs, Trusted Types can now restrict and
sanitize the input for those functions. So, the question arises: is
Trusted Types the panacea to rid the Web of client-side XSS?
To answer that question, we want to conduct a semi-structured
interview that includes a coding task where the participants need
to create a Trusted Types Policy for a small Web application.

I. INTRODUCTION

As a cornerstone of our modern society, the Web has
improved the way we communicate, collaborate, teach, and
entertain ourselves and our fellow human beings. Due to this
importance, the Web is one of the primary targets of attacks.
For more than two decades, Cross-Site Scripting (XSS) has
been present in the annually published OWASP Top 10 Web
Application Security Risks [10]. In order to mitigate the effect
of those attacks, a correctly crafted Content Security Policy
(CSP) [20] can be deployed. However, numerous research
has shown that the vast majority of all policies in the wild
are trivially bypassable [1, 12, 18, 19]. Furthermore, recent
work uncovered problems and roadblocks that developers
face when dealing with CSP deployment [13], where third-
party code was identified as one of the major roadblocks
for CSP. They also mentioned that server-side XSS seems
to be far more prominent in the minds of developers than
the client-side because all participants explained this type
of XSS during the drawing task. Also, even CSPs that are
considered meaningful can be bypassed via JSONP [18],
script-gadgets [8], open redirects [11], or the usage of string-
to-code functions like JavaScript’s eval function. Third parties,
however, often require the usage of the eval function, or even
the usage of unsafe-inline, in order to work properly [15].
Allowing dangerous functions like eval and other string-to-
code conversions, or allowing the usage of event handlers
and inline scripts via functions that create DOM Elements
(e.g. innerHTML) enable client-side XSS attacks. Because
research has shown how prevalent those client-side XSS
attacks are in the wild[7, 14], Trusted Types have been
proposed [6] as a mechanism to sanitize data before passing
it to dangerous JavaScript sinks. While Wang et al. [17] have
exemplified how Trusted Types could be incorporated into a
Web Framework, nobody checked if Trusted Types suffers
from the same usability issues as its ”older” brother CSP.

Especially in a realistic setting that the Web application uses
third parties for features, analytics, and monetarization.

Notably, Trusted Types is special since a developer has to
face certain technical challenges that occur during Trusted
Types deployment but not during the deployment of CSP. For
example, same-origin iframes inherit the parent’s CSP (which
is used to enforce Trusted Types), but they do not inherit the
Trusted-Types Policy itself. Also, third parties often program-
matically add random URLs (e.g., changing advertisement
banners) or evaluate random JavaScript code. Furthermore,
Steffens et al. [15] have shown the common practice of using
inline scripts and inline event handlers in programmatically
added HTML tags of third parties. To specifically allow those,
a developer needs to parse the HTML and check if the
contained JavaScript is allowed to be executed. However, the
usage of the browser’s DOMParser API is restricted to only
receive a Trusted Type, which results in a circular dependency.

In order to assess if Trusted Types is repeating the problems
and design errors of CSP, we want to answer the following
research questions by conducting a semi-structured interview
that includes a coding task:

1) Do developers know client-side XSS and understand the
difference to the server-side problem?

2) What roadblock do the developer face when deploying
Trusted Types for a Web application?

3) How do developers resolve problems during the deploy-
ment, and what strategies do they follow?

II. METHODOLOGY

In order to enable participation from all over the world and
to reduce the concerns of possible participants regarding the
pandemic situation, we want to conduct the study as a fully
online experience. To make this process as comfortable for
the participants as possible, we will use whatever video chat
software they prefer as long as it allows for screen sharing.

Given that Trusted Types is a relatively new security mech-
anism (only Chromium supports it, and only since version 83
(May 2020)), not many developers have worked or even heard
of Trusted Types before. Thus we want to invite real-world
Web developers without prior experience with the mechanism
and give them a brief introduction into Trusted Types.

After the introduction into the mechanism, we want to
conduct a semi-structured interview with the participants in
order to assess their knowledge and perception of XSS and
its dimensions (client- vs. server-side), as well as mitigation
techniques for those vulnerabilities.

Afterward, we ask the participants to create a functional
Trusted Types policy for a small Web application. In contrast
to the application used by Roth et al. [13], we want to
incorporate real-world third-party services to increase the



ecological validity of our results. In order to save time, we
give the participants a short introduction to the application
structure/code and where to deploy the Trusted Types policy.
Details of the Web application, as well as details on the online
setup for the coding task, will be explained later (Section II-A).

Finally, during the debriefing, we assess if the participant
plans to deploy Trusted Types in their work setting and, if not,
what would need to change in order to do so.

To analyze the gathered information, we will first transcribe
each interview. Afterward, we unitize [2] the transcript and
conducted open coding according to Strauss and Corbin [16]
to analyze the data. For the analysis of the coding task,
we additionally use the screen recordings to not miss any
information. In total, two coders will be involved in the
coding process and construction of the codebook. We will
iteratively continue with this procedure until we conducted
enough interviews to reach saturation of our dataset.

A. The Coding Task:

The application itself will be a Python Django Web applica-
tion that allows the user to store private notes after a successful
registration/login. Notably, it is not required to understand how
details of the framework to deploy Trusted Types successfully.

This application uses third-party services that are also used
in real-world Web applications such as analytics (Google
Analytics [9]), social media integration (Twitter Widget [5]),
maps integration (Open Street Maps [4]), comment plug-ins
(Disqus [3]), and an ad service (self-crafted to prevent ad-
fraud). We choose those services in order to account for widely
used third parties from a wide variety of different vendors.

To make participation as comfortable as possible, we offer
them several ways to change the code during the coding task.
We offer them to download the application’s source code
to simulate the usual programming behavior as closely as
possible. To not force them to run it on their system directly,
we offer them to either use an Ubuntu VM that we provide
to them, or they can use docker to run the application. If all
fail, we also plan to offer the participant to remote control a
machine from our institution (e.g., via Teamviewer).

B. Hireing Process:

Roth et al. [13] presented their lessons learned from con-
ducting an online interview study with a coding task. Accord-
ing to their investigations, the most successful way of hiring
was to participate as a speaker in non-scientific conferences
(e.g., OWASP, BlackHat, RuhrSec) in order to get first-hand
contact with real-world Web developers that are interested in
Web security. We take those learned lessons and try to do
exactly what was proposed by the authors.

III. CONCLUSION

Trusted Types is a new API that enables Web developers
to ensure that only trusted and sanitized input flows into
dangerous JavaScript sinks such that effects of client-side
XSS are mitigated. The standard is still only an editor’s
draft, although it is already supported by Google’s Chromium

Browser and its derivates. From a technical point of view,
Trusted Types seems to repeat the problematic decisions of
CSP that hindered the wide adoption of the mechanism.

With this work, we want to uncover problems, roadblocks,
and deployment strategies of Trusted Types such that we can
improve Trusted Types. With an improved and easy-to-use
XSS protection mechanism, we can contribute to a more secure
Web for every site and every user, not only for the big players.

REFERENCES

[1] S. Calzavara, A. Rabitti, and M. Bugliesi. Content Security
Problems? Evaluating the effectiveness of Content Security
Policy in the wild. In CCS, 2016.

[2] J. L. Campbell, C. Quincy, J. Osserman, and O. K. Pedersen.
Coding in-depth semistructured interviews: Problems of uniti-
zation and intercoder reliability and agreement. Sociological
methods & research, 2013.

[3] Disqus. Disqus. Online at https://disqus.com/, 2022.
[4] OpenStreetMap Foundation. OSM Embeddable HTML. Online

at https://wiki.openstreetmap.org/wiki/Export#Embeddable
HTML, 2022.

[5] Twitter Inc. What would you like to embed? Online at https:
//publish.twitter.com/, 2022.

[6] K. Kotowicz and M. West. Trusted Types. W3C Standard.
Online at https://w3c.github.io/webappsec-trusted-types/dist/
spec/ , 2021.

[7] S. Lekies, B. Stock, and M. Johns. 25 Million flows later:
Large-scale detection of DOM-based XSS. In CCS, 2013.

[8] S. Lekies, K. Kotowicz, S. Groß, E. A. Vela Nava, and M. Johns.
Code-Reuse attacks for the Web: Breaking Cross-Site Scripting
mitigations via Script-Gadgets. In CCS, 2017.

[9] Google LLC. Google Analytics. Online at https://analytics.
google.com/, 2022.

[10] Open Web Application Security Project. OWASP Top 10 Web
Application Security Risks. Online at https://owasp.org/www-
project-top-ten/2017/A7 2017-Cross-Site Scripting (XSS),
2017.

[11] S. Roth, M Backes, and B Stock. Assessing the Impact of Script
Gadgets on CSP at scale. In AsiaCCS, 2020.

[12] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock.
Complex Security Policy? A Longitudinal analysis of deployed
Content Security Policies. In NDSS, 2020.

[13] S. Roth, L. Gröber, M. Backes, K. Krombholz, and B. Stock.
12 Angry Developers - A Qualitative Study on Developers’
Struggles with CSP. In CCS, 2021.

[14] M. Steffens, C. Rossow, M. Johns, and B. Stock. Don’t Trust
The Locals: Investigating the Prevalence of Persistent Client-
Side Cross-Site Scripting in the Wild. In NDSS, 2019.

[15] M. Steffens, M. Musch, M. Johns, and B. Stock. Who’s hosting
the block party? Studying third-party blockage of CSP and SRI.
In NDSS, 2021.

[16] A. Strauss and J. M. Corbin. Grounded theory in practice. Sage,
1997.

[17] P. Wang, B. A. Gudmundsson, and K. Kotowicz. Adopting
trusted types in production web frameworks to prevent dom-
based cross-site scripting: A case study. In EuroS&PW, 2021.

[18] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc. CSP
is dead, long live CSP! On the insecurity of whitelists and the
future of Content Security Policy. In CCS, 2016.

[19] M. Weissbacher, T. Lauinger, and W. Robertson. Why is CSP
failing? Trends and challenges in CSP adoption. In RAID, 2014.

[20] M. West. CSP Level 3. W3C Standard. Online at https://www.
w3.org/TR/CSP3/ , 2021.

https://disqus.com/
https://wiki.openstreetmap.org/wiki/Export#Embeddable_HTML
https://wiki.openstreetmap.org/wiki/Export#Embeddable_HTML
https://publish.twitter.com/
https://publish.twitter.com/
https://w3c.github.io/webappsec-trusted-types/dist/spec/
https://w3c.github.io/webappsec-trusted-types/dist/spec/
https://analytics.google.com/
https://analytics.google.com/
https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/2017/A7_2017-Cross-Site_Scripting_(XSS)
https://www.w3.org/TR/CSP3/
https://www.w3.org/TR/CSP3/

	Introduction
	Methodology
	The Coding Task:
	Hireing Process:

	Conclusion

