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Machine Learning (ML) has been indispensable to mal-
ware detection in recent years. Particularly, its subset - deep
learning-based models can provide superior performance over
traditional methods (i.e., signature-based or heuristic-based)
for malware detection [1]. However, recent research has shown
that the efficiency of ML-based techniques can drop drastically
due to adversaries attacking these systems via adversarially
crafted/perturbed inputs. Such attacks have their roots in the
computer vision domain with the study of Szegedy et al. [2],
and then followed by others [3]–[5]. In the malware detec-
tion domain, adversarial ML attacks to ML-based malware
detectors involve adding carefully crafted perturbations to the
malware samples that preserve the malicious functionality of
the malware while allowing the samples to evade the target
ML-based malware classifiers (i.e., modified malware samples
are classified as benign). Using such attacks, researchers were
able to craft adversarial malware samples and successfully
evaded ML-based malware detection systems including Win-
dows Portable Executable (PE)-based malware detectors [6]–
[8], Android malware detectors [9], [10], PDF-malware clas-
sifiers [11], [12] and even cloud based proprietary anti-virus
engines (e.g., Kaspersky, Eset, Sophos) [13]. These examples
clearly demonstrate that it is possible for attackers to evade
state-of-the-art ML-based malware classifiers not by complex
concealment techniques (e.g., polymorphism, metamorphism,
packing), but by simple, minute adversarial perturbations care-
fully crafted via adversarial ML attacks.

In order to defend ML-based malware classifiers from
such attacks, researchers employed defense mechanisms such
as adversarial training [2]. However, such mechanisms are
computationally costly and also suffer from model poisoning
and decreased detection accuracy [8]. Therefore, defending
ML-based malware detection systems against adversarial ML
attacks is still an open problem.

The motivation of this work is to develop a practical
method to quickly and efficiently detect malware, based on
the family it belongs to, in a way that is robust against
adversarial ML attacks and does not require costly adversarial
defense mechanisms. To achieve this, we propose the use
of visualization-based malware detection. In this preliminary
work, we show that converting the malware detection problem
into image-based malware classification problem provides

Fig. 1. An overview of our proposed approach. Malware binaries are
converted into gray-scale images before being fed to the CNN for the training
process. Four adversarial ML attacks are applied to malware binaries. Similar
to the training process, these samples are converted to images and then fed to
the model as input in order to classify them according to the malware family
they belong to.

robustness against adversarial ML attacks. The underlying
robustness stems from the fact that adversarial ML attacks,
which are relatively easy to apply to images in the computer
vision, are extremely difficult to apply to transformed images
of malware samples. This is because such an operation that
adds carefully crafted adversarial noise to a malware image
has a very high possibility of breaking the functionality of the
actual malware when the image is converted back to a malware
binary.

A visual depiction of our approach is shown in Figure 1. In
the first stage, each malware binary undergoes pre-processing
during which each binary in our dataset is converted to an
array of unsigned 8-bit integers and normalized to a common
size. These arrays, which represent the binaries as gray-scale
images, are then used to train a Convolutional Neural Network
(CNN) in the second stage. In the third stage, adversarial
examples are then generated using each of the black box (i.e.,
brute-force random byte append and brute-force benign byte
append) and white box (i.e., random byte FGSM and benign
byte FGSM) attacks.

In order to test the efficacy of image-based malware classi-
fication, and compare it with state-of-the-art ML-based clas-
sification, we used the 2015 Microsoft Malware Classification
Challenge dataset [14] which includes real malware samples,
including obfuscated ones, from nine different malware fam-
ilies in the Windows Portable Executable (PE) format. As
the state-of-the-art classifier, we followed the prior studies
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Fig. 2. A side-by-side comparison of the evasion rates of the attacks used
in this study when applied to MalConv and our Image-Based Classifier. It
is evident that the vast majority of adversarial examples generated using the
four attacks methods failed to misclassify the image-based classifier.

( [6]–[8], [15], [16]) and trained MalConv [17], a CNN-
based malware classifier that analyzes the raw bytes of PE-
based malware samples. As the image-based classifier, we
trained a CNN-based classifier using the gray-scale images
of the malware in the dataset. To evaluate the robustness of
our image-based classifier, we performed four adversarial ML
attacks that preserve the functionality of malware samples to
both of the classifiers.

The results of our evaluation show that the image-based
malware detection approach is robust against adversarial ML
attacks that can easily fool a state-of-the-art ML-based mal-
ware detector as shown in Figure 2. The evasion rate of
adversarial samples dropped to 0% in certain attacks. Further-
more, our tests demonstrate that even if an adversary increases
the amount of adversarial perturbations by up to 20% of
the malware sample’s original size, our image-based malware
detector still provides a detection accuracy of above 80%
as shown in Figure 3. Moreover, we analyzed the overhead
incurred by implementation. The analysis indicates that the
image-based malware detection technique provides a 70%
decrease in training time and a three-fold reduction in RAM
usage during the training process in comparison to a start-of-
the-art ML-based malware classifier.

Our preliminary analysis shows that image-based classifiers
are both efficient and also robust against adversarial ML
attacks that preserve the functionality of the malware. For
this reason, employing an image-based malware classifier does
not require additional defense mechanisms, such as adversarial
training; hence, it remains immune to model poisoning. To the
best of our knowledge, this is the first work in the adversarial
malware literature that demonstrates and analyzes the robust-
ness of image-based classifiers against adversarial ML attacks.
As future work, we will employ more adversarial ML attacks
to our study such as attacks that perturb individual parts of
a PE binary using the LIEF library [18]. In addition, we will
incorporate more ML classifiers in addition to MalConv, and
enlarge our malware dataset to include more malware binaries.
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Fig. 3. The classification accuracy of the image-based classifier with respect
to the amount of bytes appended to the samples as a percentage of the original
sample size.
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