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Abstract—Tuning the hyperparameters in the differentially
private stochastic gradient descent (DPSGD) is a fundamental
challenge. Unlike the typical SGD, private datasets cannot
be used many times for hyperparameter search in DPSGD,
such as Grid Search. Therefore, there is an essential need for
algorithms that, within a given search space, can find near-optimal
hyperparameters for the best achievable privacy-utility tradeoffs
efficiently. We formulate this problem into a general optimization
framework for establishing a desirable privacy-utility tradeoff,
and systematically study three cost-effective algorithms for being
used in the proposed framework: evolutionary, Bayesian, and
reinforcement learning. Our experiments, for hyperparameter
tuning in DPSGD conducted on MNIST and CIFAR-10 datasets,
show that these three algorithms significantly outperform the
widely used grid search baseline. As this abstract offers a first-
of-a-kind framework for hyperparameter tuning in DPSGD,
we discuss existing challenges and open directions for future
studies. As we believe our work has implications to be utilized in
the pipeline of private deep learning, we open-source our code
at https://github.com/AmanPriyanshu/DP-HyperparamTuning.

Index Terms—Differential Privacy, Privacy Preserving Machine
Learning, Hyperparameter Optimization, Bayesian Optimization,
Reinforcement Learning

I. INTRODUCTION

Deep neural networks (DNNs) [1] can learn very useful
patterns from large multi-dimensional datasets, enabling moti-
vational applications; eg: in health [2]. However, large amounts
of training data are required for not only learning the near-
optimal DNN parameters for the underlying task, but also for
finding the right set of hyperparameters that enable appropriate
learning. For a task defined on public datasets, the same data
can be reused as many times as we wish. But, as every reuse
of the available data comes at a price of some privacy loss,
hyperparameter tuning has been a fundamental challenge for
tasks defined on private datasets.

Differential Privacy (DP) [3] provides strong guarantees for
the individuals participating in private datasets. DP restricts
the maximum contribution of each sample on the result of
a computation on the private dataset. Differentially-private
stochastic gradient descent (DPSGD) [4] is a widely accepted
algorithm for training DNNs on private datasets, where zero-
mean Gaussian noise, with a predefined variance, is added to

the clipped gradients computed for each sample in the training
dataset at each iteration. Noisy gradients often result in a
degraded accuracy for the trained DNN.

Previous works look at two variants: (1) optimizing privacy
parameters of a private model for achieving comparable
performance to a non-private model and (2) providing privacy
guarantees to reach moderate performance [5]. However, in
practice, both hyperparameters and privacy parameters need to
be optimized within the user-specified privacy budget. Thus,
in this abstract, we propose a systematic study for learning
hyperparameters faster (constrained by a privacy budget) and
with less privacy cost through four different optimization
algorithms.

II. METHODOLOGY

Although there is a wide range of hyperparameters that one
can choose from in DPSGD (eg: noise multiplier, clipping
factor, batch size, learning rate, etc.), in this abstract, we
specifically focus on two important hyperparameters: noise

multiplier � (the standard deviation of the Gaussian noise)
and learning rate ⌘. We optimize for these two parameters
specifically as the epsilon (✏ i.e. privacy leakage) and validation
loss (minimizing the validation loss) are highly dependent on
the chosen values for � and ⌘, respectively. To this end, we
study three cost-effective algorithms: evolutionary, Bayesian,
and reinforcement learning and compare the results with the
grid search baseline.

We consider the problem of training a DNN with a fixed
architecture (i.e., the number, type, and size of each layer)
using DPSGD. Let Dtrain denotes the training set and Dvalid

denote the validation set. Let H = {h1, . . . , hN} denotes the
set of N hyperparameters that are used during training on
Dtrain and have impact on both validation loss (val loss)
and privacy loss in DP (✏), on Dvalid. To provide a general
but customizable framework, we define reward as a weighted
linear combination of val loss and ✏:

reward = (↵U · e�val loss) + (↵P · e�✏) (1)

We use regularizers ↵U and ↵P 2 [0, 1] to control the
importance of utility and privacy, respectively (to control the
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TABLE I
COMPARISON OF DIFFERENT METHODS BASED ON THE BEST-ACHIEVED

REWARD AND THE AVERAGE TIME REQUIRED TO ATTAIN THIS REWARD FOR
THE SEARCH SPACE ON (A) CIFAR-10 AND (B) MNIST.

Method Time Best Reward Accuracy Epsilon (✏)
(in hours) (in %) (in %)

(A) CIFAR-10
Grid Search 150.020 51.406 44.936 0.600
Evolutionary 11.064 52.044 37.999 0.599
Bayesian 49.636 51.846 43.864 0.581
Reinforcement 52.971 52.398 44.884 0.590

(B) MNIST
Grid Search 43.712 72.260 89.133 0.683
Evolutionary 5.250 72.615 73.745 0.175
Bayesian 2.853 73.385 81.562 0.349
Reinforcement 31.165 74.906 75.022 0.240

privacy-utility trade-off). In our proposed framework, we first
set these ↵ regularizers, and then start searching for the optimal
hyperparameters in H using the algorithms explained in the
following section. In this abstract, we consider H = {�, ⌘},
where � denotes the noise multiplier and ⌘ denotes the learning
rate in DPSGD. Our aim for the following experiments remains
to optimize the reward denoted by Equation (1). Notice that, in
practice, the value of ↵U and ↵P depends on the requirements
of the underlying task.

A. Optimization Techniques

• Grid Search Method: Grid search is utilized to provide a
sufficient exploration within a restricted search space.

• Evolutionary Optimization: Evolutionary optimization
algorithms provide an opportunity to utilize adaptive
search optimization algorithms [6].

• Bayesian Optimization: Bayesian optimization combines
prior experience with sample information to approximate
the function distribution using the Bayesian formula [8].

• Reinforcement Learning: In our application of this method,
we use a regression network capable of estimating the
reward output of training on a particular set of hyperparam-
eters. Subsequently, in the following episodes, we select
a certain percent of experiments based on the reward
estimate of the regression network. This methodology
allows us to estimate the hyperparameter-reward function
and verify the proximal search space of high-performing
hyperparameters, giving us generalized results.

III. RESULTS

To assess and analyze the effectiveness of optimization
algorithms across both CIFAR-10 and MNIST datasets, we
use Grid-Search on a similar search complexity as the other
methods. We display the computational time taken, best reward
achieved, and its respective accuracy and epsilon value in Table
I. Grid search displays a poor understanding of the epsilon-
accuracy as it is not adaptive in nature. It achieves a reward
of 72.2% and 51.4% on the MNIST and CIFAR-10 datasets,
respectively.

Here, we observe that although Reinforcement Learning
provides the highest performance, it comes at the expense
of computational time. On the other hand, Evolutionary
Algorithms and Bayesian Optimization provide consistent
results with respect to computational time and performance.

IV. CONCLUSION & FUTURE WORK

In this abstract, we discussed different methodologies for
hyperparameter tuning for the private training of deep neural
networks using DPSGD algorithm. We proposed a novel,
customizable reward function that allows users to define a
single objective function for establishing their desired privacy-
utility tradeoff. We quantified, compared, and analyzed the
methods of grid search (as the baseline), Bayesian optimization,
evolutionary optimization, and reinforcement learning, across
two datasets, CIFAR-10, and MNIST. We observed that
Bayesian and evolutionary optimization behave similarly in
terms of the privacy-utility trade-off point they provide, and
how efficiently they find it. Reinforcement learning, however,
provides a more desirable trade-off but with varying efficiencies
across datasets. All three methods perform much better than the
baseline grid search algorithm. We believe that our work serves
as a valuable resource for privacy-preserving ML practitioners,
developers, and researchers for hyperparameter tuning.

For future work, one can use our proposed method alongside
that of [7], where a portion of the privacy budget is allocated
to finding the appropriate learning rate on the private dataset.
Another direction is to extend our proposed method to tune
other hyperparameters in DPSGD, and even the network
architecture and non-linear activation functions that are used.
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