
Poster: L4 (Long Long Long Long) Pointer
to Prevent Buffer Overflow*

Seong-Kyun Mok
The Division of Computer Convergence

Chungnam National University
Daejeon, Republic of Korea

mok7764@cnu.ac.kr

Eun-Sun Cho
The Division of Computer Convergence

Chungnam National University
Daejeon, Republic of Korea

eschough@cnu.ac.kr

Abstract—This paper introduces a new method to ensure
spatial memory safety using vector operations supported by an
existing architecture. The proposed scheme with ”L4 Pointers”
uses special 128-bit pointers to support the safety of pointer
arithmetic operations. It uses vector operations in the commonly
used architecture to encode the metadata of each memory chunk.
We also introduce a prototype of the L4 pointer based on
the LLVM. Experimental results show that our L4 pointer
method shows better performance than existing spatial memory
safety supports, while maintaining the atomicity of the pointer
arithmetic operations.

I. INTRODUCTION

Buffer overflows are well-known vulnerabilities of C/C++
programs. Although the security problems caused by buffer
overflow seem too old to consider these days, they are still
notorious [1]. Researchers and practitioners have investigated
various approaches to support spatial memory safety to prevent
buffer overflow, but some issues remain to be solved. First,
the overhead of updating pointers with safety support is not
negligible for practical usage. Second, updating pointers and
bound information should be atomic, because they would
lead to false negative errors in multi-threading environment,
otherwise. For instance, Intel MPX [2] has a false negative
problem in a multithreading environment because with the
separate bound information table, it fails to support atomic
updates of pointers and bound information. Third, finding an
effective way to store the appropriate bound information is
not straightforward. We call these various forms of bound
information ”metadata.”

This study proposes a new method called L4 Pointers to
prevent a buffer overflow, focusing on the above issues. The
L4 Pointer uses similar approaches to fat [3] and delta pointers
[4] to resolve these issues. A fat pointer is a pointer enlarged
with the corresponding metadata such as bound information,
while a delta pointer embeds metadata in the pointer itself
without increasing the size of the pointer variable.

However, traditional fat pointers are limited in that they
do not support the atomicity of the update operation; updating
both the pointer and metadata, and performing memory bound

This work was supported by Institute for Information communications
Technology Planning & Evaluation(IITP) grant funded by the Korea govern-
ment (MSIT)(No.2019-0-01343, Training Key Talents in Industrial Conver-
gence Security)

checks, inherently require multiple operations, which will
cause problems in multi-thread applications. To overcome this
nonatomic update problem, recently proposed fat pointers used
special operations of newly introduced hardware architectures.
However, currently, such a new hardware has not been widely
accepted, thus it is difficult to envision that this approach will
be dominant in practice in the near future.

However, delta pointers support atomic updates of a pointer
with its metadata. However, the delta pointer uses only the
upper 32 bits of a pointer for metadata, while the lower 32 bits
are used for a virtual address, which is not sufficient for either;
32 bits for bound information allow only upper bound checks,
and 32 bits for a virtual address might cause compatibility
problems.

The proposed L4 Pointer method mainly uses the delta
pointer approach to support atomicity in pointer updates and
multiple-thread. Based on 128-bit pointers, the L4 Pointer
reserves sufficient space to store metadata and the pointer
itself. Depending only on the vector operations and 128-bit
registers that most hardware architectures support [5], we
expect the L4 Pointer to be preferred in real-world usage.
Basically, our contributions include the following.

• This paper presents the design and implementation of
prototype of L4 Pointer, which provides sufficient meta
data storage space, to support both upper and lower bound
checks against buffer overflows.

• The proposed L4 Pointer provides atomic operations of
the pointer and metadata.

• The proposed L4 Pointer works on commonly used ar-
chitectures such as Intel processors and ARM processors.
The target architecture of the prototype of L4 Pointer is
Intel x86.

II. L4 POINTER

To use the L4 Pointer, a normal pointer of 64 bits is
expanded to consecutive 128 bits. Metadata is stored in the
upper 64 bits, of which the upper and low bounds evenly share.
It is significantly similar to delta pointers [4], except that the
metadata of a delta pointer is 32 bits long, which is too short
to hold both the upper and lower bounds. To handle 128-bit
long pointers and manipulate metadata and pointers atomically,
the L4 pointer uses vector operations and vector registers

Fig. 1. Layout of L4 Pointer and process of pointer arithmetic in L4 Pointer

UPPER BOUNDS’ = UPPER BOUNDS & 8000000000
LOWER BOUNDS’ = LOWER BOUNDS & 8000000000
BOUNDS’ = UPPER BOUNDS’ | LOWER BOUNDS’
TAG RESULT = BOUNDS’ << 32
RESULT ADDRESS = VIRTUAL ADDRESS | TAG RESULT
REG = LOAD RESULT ADDRESS

Fig. 2. Process of LOAD operations in L4 Pointer

[5]. Fortunately, the most commonly used architectures such
as X86 and ARM provide these facilities. More details are
provided below.

A. Layout of L4 Pointer

The layout of L4 pointer is illustrated in Fig. 1. As afore-
mentioned, the upper 64 bits of the L4 pointer are used to store
metadata, whereas the lower 64 bits are used for the virtual
address. The upper 64 bits are divided in half, the upper 32
bits are used for upper-bound storage, and the lower 32 bits
are used for lower-bound storage. In each of the 32 bits, bound
information is stored only in 31 bits, and the highest 1 bit is
used as a flag.

B. Pointer Arithmetic

We assumed that the vector operations and 128-bit registers
are provided by the architecture to enable the operation of
the 128-bit pointers. For instance, an integer value is added
to a pointer (like ‘p+0x18’ where p is a pointer), the integer
value (for instance, 0×18 in ‘p+0x18’) is also expanded to
128 bits to align to the 128-bit long pointer p. Note that the
value to be added is copied to the upper and lower bounds as
well as to the virtual address area. Because the newly created
L4 Pointer cannot load/store from/to the address by itself,
conversion between an L4 Pointer and a normal pointer is
necessary, as depicted in Fig. 2. If overflow/underflow occurs,
the highest bit of ’RESULT_ADDRESS’ is set to 1, and the
memory management unit (MMU) generates an exception.

C. Example of L4 Pointer

The pointer arithmetic operations use special registers. The
prototype of the L4 Pointer is currently operating on an
Intel x86 [5]. Special registers called the XMM registers
of Intel x86 are 128-bit long, and used for vector or float
calculations. Fig. 3 shows the pointer operation process in the

movaps XMM1, XMMWORD PTR [rbp −0x20]
movaps XMM0, 0 x1000000010000000000000001
paddq XMM1, XMM0
movaps XMMWORD PTR [rbp −0x30] , XMM1

Fig. 3. Example assembly codes that adds an offset to a pointer in Intel x86
Architecture used L4 Pointer

TABLE I
THE RESULT OF DEDUP OF PARSEC FOR L4 POINTER

The Number of Threads
1 2 3 4

L4 Pointer 26.2754s 14.1814s 7.7172s 5.2550s
Baseline 26.1704 14.2386s 7.6964s 5.2376s

x86 instruction. The instructions ’movaps’ and ’paddq’ are
used instead of ’mov’ and ’add’ and are used for the XMM
registers. The calculated value was then set in the XMM0
register, and the next operation is performed using the ’paddq’
instruction. The result of the operation is stored in the XMM1
register and memory.

III. IMPLEMENTATIONS

Currently, the prototype of the L4 pointer is implemented
using the LLVM 12.0.0 [6]. However, it cannot support double
pointer and structure members that are of the pointer type yet,
which we are currently working on. We use the XMM registers
and related operations in the Intel x86 architecture.

IV. EXPERIMENTS AND CONCLUSIONS

We measured the performance overhead by running the
Dedup PARSEC benchmark package [7]. We used Intel i9-
7900X machines with 10 cores at 3.30 GHz and 64 GB of
memory. The results are presented in I, depicting that the L4
Pointer does not incur significant overhead during execution.
Currently, it does not cover all pointers, which means that even
a smaller overhead is expected in the future.

REFERENCES

[1] M. Miller, ”Trends, challenges, and strategic shifts in the software vul-
nerability mitigation landscape,” presented at the BlueHat IL., February
2019.

[2] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, ”Intel
MPX Explained: A Cross-layer Analysis of the Intel MPX System
Stack”, Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2(2):28, 2018

[3] D. Song et al., ”SoK: Sanitizing for Security,” 2019 IEEE Sym-
posium on Security and Privacy (SP), 2019, pp. 1275-1295, doi:
10.1109/SP.2019.00010.

[4] T. Kroes et al., ”Delta pointers: buffer overflow checks without the
checks,” in European Conference on Computer Systems (EuroSys),
2018, pp. 1-14, doi:10.1145/3190508.3190553

[5] Intel 64 and IA-32 Archtectures Software Developer’s Manual Vol-
ume 1: Basic Architecture, Intel, Accesed: September 2016, Available:
https://www.intel.com/content/dam/www/public/us/en/documents
/manuals/64-ia-32-architectures-software-developer-vol-1-manual.pdf

[6] The LLVM Compiler Infrastructure, LLVM, [Online]. Available:
https://llvm.org/

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ”The PARSEC benchmark
suite: characterization and architectural implications,” in the 17th inter-
national conference on Parallel architectures and compilation techniques
(PACT ’08), 2008, pp 72–81. doi:10.1145/1454115.1454128

