
Poster: Azeroth: Auditable Zero-knowledge
Transaction in Smart Contracts

Gweonho Jeong
Hanyang University

Seoul, Republic of Korea
kwonhojeong@hanyang.ac.kr

Nuri Lee
Kookmin University

Seoul, Republic of Korea
nuri@kookmin.ac.kr

Jihye Kim
Kookmin University

Seoul, Republic of Korea
jihyek@kookmin.ac.kr

Hyunok Oh
Hanyang University

Seoul, Republic of Korea
hoh@hanyang.ac.kr

I. INTRODUCTION

In this paper, we propose an auditable zero-knowledge trans-
action framework called Azeroth based on zk-SNARK [1].
The Azeroth framework provides privacy, verifiability, and
auditability for personal digital assets while maintaining its
efficiency of transactions. Azeroth preserves the original func-
tionality of the account-based blockchain as well as providing
the additional zero-knowledge feature to meet the standard
privacy requirements. Azeroth is devised using encryption for
two-recipients (i.e., the recipient and the auditor) so that the
auditor can audit all transactions. While the auditor can audit
a transaction, it cannot manipulate any transaction. Azeroth

enhances the privacy of the transaction by performing multiple
functions such as deposit, withdrawal, and transfer in one
transaction. For the real-world use, we adopt a SNARK-
friendly hash algorithm [2], [3] to instantiate encryption to
have an efficient proving time and execute experiments in
various platforms.

II. DATA STRUCTURE

Account. There are two types of accounts in Azeroth: an ex-
ternally owned account denoted as EOA, and an encrypted ac-
count denoted as ENA. Unlike traditional account type(EOA),
ENA keeps a ciphertext indicating plain amount of account.
The smart contract of Azeroth controls the ENA’s lifecycle.

Auditor key. An auditor generates a pair of private/public keys
(ask, apk) used in the public key system; apk is used when
a user generates an encrypted transaction, while ask is used
when an auditor needs to audit the ciphertext.

User key. Each user generates a pair of private/public keys
(usk = (kENA, skown, skenc), upk = (addr, pkown, pkenc)).

• kENA : It indicates a secret key for encrypted account of
ENA in a symmetric-key encryption system.

• (skown, pkown) : pkown is computed by hashing skown. The
key pair is used to prove the ownership of an account
in a transaction. Note that skown is additionally used to
generate a nullifier, which prevents double-spending.

• (skenc, pkenc) : These keys are used in a public-key en-
cryption system; skenc is used to decrypt ciphertexts taken
from transactions while pkenc is to encrypt transactions.

• addr : It is a user address and computed by hashing pkown
and pkenc.

III. SCHEME

A. Overview
We construct Azeroth by integrating deposit/withdrawal

transactions and public/private transfer transactions to a single
transaction zkTransfer. Figure.1 illustrates the zkTransfer. In
zkTransfer, v

pub

in
and v

pub

out are publicly visible values. v
ENA

indicates the decrypted value of sct. The updated v
ENA

new
is

encrypted and stored as sct
⇤ in ENA. The amount (vpriv

in
)

included in a commitment can be used as input if a user has its
opening key; the opening key is delivered in a ciphertext pct so
that only the destined user can correctly decrypt it. To prevent
from double spending, for each spent commitment a nullifier
is generated by hashing the commitment and the private key
skown, and appended to the blockchain. Finally, zkTransfer

proves that all of the above procedures are correctly performed
by generating a zk-SNARK proof [1]. Auditability is achieved
by utilizing a public key encryption with two recipients; all
pct ciphertexts can be decrypted by an auditor as well as a
receiver so that the auditor can monitor all the transactions.

B. Algorithms
Azeroth consists of three components: Client, Smart Contract,
and Relation.

[Azeroth Client]

• Setup
Client

(1�,RZKT)! pp: It takes a security parameter
and a relation as input, and returns the public parameter
pp.

• KeyGenAudit
Client

(pp) ! (ask, apk),TxKGA: This algo-
rithm takes a public parameter pp and outputs an auditor
pair (ask, apk), and a transaction TxKGA to register the
auditor public key.

• KeyGenUser
Client

(pp) ! (usk, upk),TxKGU: This al-
gorithm takes a public parameter pp and outputs
a user key pair (usk, upk) = ((kENA, skown, skenc),
(addr, pkown, pkenc)), and a transaction TxKGU to register
the user public key.

• zkTransferClient(note, apk, usksend, upksend, upkrecv, vprivout ,
v
pub

in
, vpubout , EOArecv) ! TxZKT: On inputs of a note, an

auditor public key apk, a sender’s key pair, a receiver’s
public key, public/private value amounts, and the receiver
account EOArecv for v

pub

out , this algorithm collects values
from a sender’s EOA, ENA, and a note, then sends



Fig. 1. Overview of zkTransfer

them to a receiver’s EOA, and a new commitment. The
remaining balance is stored back to the sender’s ENA.
The internal procedures are described as follows:

1) Consuming note(cm, o, v): It proves the knowledge of v
using the opening o and the membership of a commitment
cm, and derives a nullifier nf.

2) Generating cmnew: By executing COM(vprivout , addrrecv;
onew), a new commitment and an opening are obtained.
Then it encrypts (onew, v

priv

out , addr
recv) and outputs pct.

3) Processing currency: The sender’s ENA balance is up-
dated as vENAnew = vENAold + vpriv

in
+ vpub

in
- vprivout - vpubout .

With prepared witnesses and statements, the algorithm
generates a zk-SNARK proof and finally outputs a
zkTransfer transaction TxZKT.

[Azeroth Smart Contract]

In the smart contract, zkTransfer checks the validity of the
transaction such as verifying a proof. If the transaction is valid,
the smart contract processes the transaction such as updating
the MT with cmnew and appending the nullifier nf to Listnf .

[Azeroth Relation]

The statement and witness of Relation RZKT are as follows:

~x = (apk, rt, nf, upksend, cmnew, sctold, sctnew, v
pub

in
, vpubout , pctnew)

~w = (usksend, cmold, oold, v
priv

in
, upkrecv, onew, v

priv

out , auxnew,Path)

We say that a witness ~w is valid for a statement ~x, if and only
if the following holds:

1) If vpriv
in

> 0, then cmold exists in MT with given rt and Path.
2) pksend

own = CRH(sksend

own ).
3) The user address addrsend and addrrecv are well-formed.
4) cmold and cmnew are valid.
5) nf is derived from cmold and sksend

own .
6) pct

new
is an encryption of cmnew via auxnew.

7) sctnew is an encryption of updated ENA balance.
8) All amounts (e.g., vpriv

in
, vpub

in
, ...) are not negative.

IV. EXPERIMENT

In our experiment, the term cfgHash,Depth denotes a config-
uration of Merkle hash tree depth and hash type in Azeroth.
The experiment is executed on a Server

1.
Overall performance. The execution time 4.04s of Setup is
composed of the zk-SNARK key generation time 2.2s and
the deployment time 1.84s of the Azeroth’s smart contract to
the blockchain. Setup consumes a considerable amount of gas
due to the initialization of Merkle Tree. In zkTransfer, the
executed time is 4.38s including both the Client part and the
Smart Contract part. The gas is mainly consumed to verify
the SNARK proof and update the Merkle hash tree.

TABLE I
EXECUTION TIME AND GAS USAGE OF Azeroth WITH cfgMiMC7,32 [1]

Azeroth
Setup RegisterAuditor RegisterUser zkTransfer Audit

Time (s) 4.04 0.02 0.017 4.38 0.03
Gas 5,790,800 63,179 45,543 1,555,957 N/A

REFERENCES

[1] Groth, Jens, “On the Size of Pairing-Based Non-interactive Arguments,”
EUROCRYPT, pp. 305-326, 2016.

[2] Martin R. Albrecht and Lorenzo Grassi and Christian Rechberger
and Arnab Roy and Tyge Tiessen, “MiMC: Efficient Encryption and
Cryptographic Hashing with Minimal Multiplicative Complexity,” ASI-
ACRYPT (1), pp. 191-219, 2016.

[3] Lorenzo Grassi and Dmitry Khovratovich and Christian Rechberger and
Arnab Roy and Markus Schofnegger, “Poseidon: A New Hash Function
for Zero-Knowledge Proof Systems,” USENIX Security 21, pp. 519-535,
2021.

13.10GHz Intel Xeon Gold 6264R, 256GB, and Ubuntu 20.04


