
Poster: Automatic Identification and Protection of
Memory-resident Sensitive Data to Defend Against

Data-Oriented Attacks
Salman Ahmed

Department of Computer Science

Virginia Tech

Blacksburg, VA, USA
ahmedms@vt.edu

Hans Liljestrand, N. Asokan
David R. Cheriton School of Computer Science

University of Waterloo

Waterloo, ON, Canada
hans@liljestrand.dev, asokan@acm.org

Danfeng (Daphne) Yao
Department of Computer Science

Virginia Tech

Blacksburg, VA, USA
danfeng@vt.edu

Abstract—Software and hardware-based countermeasures for

protecting memory-resident data to prevent data-oriented attacks

suffer from high performance overhead due to a large number

of memory data objects and their pointers. In this ongoing

work, we propose a framework utilizing rule-based heuristics

to identify sensitive memory data and pointers automatically

from an application and protect those sensitive data and pointers

utilizing existing countermeasures. Our evaluation suggests that

an application contains as low as 3% sensitive data and needs

to protect less than 30% of its total data and pointers, on

average. Besides, our preliminary result shows that this prior-

itized protection reduces the performance overhead of existing

countermeasures by 50%.

With the advances toward practical code pointer protection
countermeasures and practical Control-Flow Integrity (CFI),
we anticipate a shift towards the manipulation of memory-
resident sensitive data or pointers as the attack vectors. In
recent research, we observe an uptick in Data-Oriented Attacks
(DOAs), also known as non-control attacks [12]–[14], [16],
[23], [24], [28] even though DOAs were introduced more than
a decade ago [6]. DOAs conform to CFI and manipulates
of memory-resident sensitive data or their pointers. Ideally,
DOAs [6], [12], [14] can modify all kinds of memory data to
change program behavior for leaking sensitive information [3]
or performing privilege escalations [8]. But the corruption
of data pointers [7] is often desirable. For example, the
manipulation of data pointers can lead to the leak of critical
information about an application’s address space layout [10],
[25], gadget stitching in Data-Oriented Programming-based
attacks [13], stack-based exploitations [6], and heap-based
exploitations [26].

Researchers have proposed both software and hardware-
based countermeasures to stop attackers from manipulating
memory-resident data or their pointers. However, software-
based countermeasures such as Data-Flow-Integrity (DFI) [5],
Data Space Randomization (DSR) [1], [4], [22], and memory
tagging [17], [18] usually suffer from performance overhead
(48-116% [17], [18]) due to inter-procedural DFI, encryption,
and masking. On the other hand, hardware-based counter-
measures (e.g., HDFI [27], Intel’s Control-Flow Enforcement
Technology, ARM Pointer Authentication (PA), and Intel’s

Memory Protection Extensions (MPX)) are efficient, but in
general, limited to one or a few platforms. Furthermore,
the overhead is non-negligible. For example, ARM Pointer
Authentication and Intel’s MPX cost on average around
19.5% [11], [15] and 50% [19] overhead, respectively, for
protecting data pointers.

The main reason for this runtime overhead is the huge
number of data objects and pointers in an application, on
average ⇠100x compared to code pointers in an application.
One solution for reducing this overhead is to identify the
sensitive data objects and prioritize them for protection, rather
than protecting all data objects. There are two approaches to
identifying sensitive data. One approach is manual, and the
other one is best effort semi-automatic. Prior work [12], [20],
[21] have suggested the manual earmarking of sensitive data.
However, manual earmarking is time-consuming and error-
prone. A few best-effort semi-automated approaches [14],
[16] can determine the criticality or sensitiveness of data.
But these works require traces of data accesses, including
traces for both normal and violating execution. As a result,
these works are not scalable due to the need for huge and
relevant execution and access traces. Besides, exercising all
the violating execution paths is challenging. Furthermore,
these techniques may not be application-agnostic and cannot
work with existing countermeasures. Thus, there is a need
for a scalable and platform- or application-agnostic automated
approach for identifying and prioritizing sensitive data or their
pointers.

In this ongoing work, we automate the identification and
prioritization of sensitive data objects through our Data and
Pointer Prioritization (DPP) framework. DPP uses shared
and reusable vulnerability patterns to identify and prioritize
sensitive data objects. These shared and reusable vulnerability
patterns enable DPP to prevent unknown and future DOAs.
DPP is also platform- or application-agnostic and adaptable
with existing countermeasures. DPP uses rule-based heuristics
to identify sensitive data objects.

We address two key challenges. First, it is challenging to
find a good representative set of rules with comprehensive



coverage since DOA are constantly evolving. To address the
challenge regarding the coverage and representativeness of
rules, we extract the rules by breaking down exploits into
common and reusable smaller vulnerability patterns. These
common patterns are applicable to many exploits and future or
unknown attacks. Second, it is also challenging to evaluate the
accuracy of our rules. Because to the best of our knowledge,
there exists no ground truth dataset of sensitive data objects,
which we can use to evaluate DPP. To evaluate the accuracy
and effectiveness of our rule-based heuristics, we construct the
ground truths of 33 sensitive data objects from 18 programs,
including five real-world applications, 13 relevant challenges
from DARPA CGC, and ten representative test cases from the
SAR dataset.

Our preliminary evaluation using manually constructed
ground truths of vulnerable data objects or pointers by iden-
tifying vulnerable data objects or pointers from vulnerable
datasets [2], [9] including 5 real-world applications shows
that less than 30% of the data objects and their pointers are
sensitive. Thus, in our testing environment, protecting less
than 30% of total memory-resident sensitive data or their
pointers is sufficient to protect the tested applications from
data-orient attacks. Besides, the rule-based identification of
sensitive memory data and pointers can lead to almost 50%
performance improvements in existing defenses in our tested
environments.

REFERENCES

[1] Sandeep Bhatkar and R. Sekar. Data space randomization. In In-

ternational Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment, pages 1–22. Springer, 2008.
[2] Paul E. Black. A software assurance reference dataset: Thousands of

programs with known bugs. Journal of Research of the National Institute

of Standards and Technology, 123:123005, April 2018.
[3] Heartbleed Bug. http://heartbleed.com, 2020. Accessed April 03, 2020.
[4] Cristian Cadar, Periklis Akritidis, Manuel Costa, Jean-Phillipe Martin,

and Miguel Castro. Data randomization. Technical report, Technical
Report TR-2008-120, Microsoft Research, 2008, 2008.

[5] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by
enforcing data-flow integrity. In Proceedings of the 7th symposium on

Operating systems design and implementation, pages 147–160. USENIX
Association, 2006.

[6] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K
Iyer. Non-control-data attacks are realistic threats. In USENIX Security

Symposium, volume 5, 2005.
[7] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Point-

GuardTM: Protecting Pointers From Buffer Overflow Vulnerabilities.
In Proceedings of the 12th conference on USENIX Security Symposium,
volume 12, pages 91–104, 2003.

[8] Daniel Moghimi. Subverting without EIP. https://moghimi.org/blog/
subverting-without-eip.html, 2014. Last accessed 6 January 2021.

[9] DARPA. Cyber grand challenge samples. https://github.com/
CyberGrandChallenge/samples, 2022. Last accessed March 14, 2022.

[10] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar,
Tiffany Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Ri-
nard, and Hamed Okhravi. Missing the point (er): On the effectiveness
of code pointer integrity. In 2015 IEEE Symposium on Security and

Privacy, pages 781–796. IEEE, 2015.
[11] Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu. {PTAuth}:

Temporal memory safety via robust points-to authentication. In 30th

USENIX Security Symposium (USENIX Security 21), pages 1037–1054,
2021.

[12] Hong Hu, Zheng Leong Chua, Sendroiu Adrian, Prateek Saxena, and
Zhenkai Liang. Automatic generation of data-oriented exploits. In 24th

{USENIX} Security Symposium ({USENIX} Security 15), pages 177–
192, 2015.

[13] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, and Zhenkai Liang. Data-oriented programming: On the
expressiveness of non-control data attacks. In 2016 IEEE Symposium

on Security and Privacy (SP), pages 969–986. IEEE, 2016.
[14] Yaoqi Jia, Zheng Leong Chua, Hong Hu, Shuo Chen, Prateek Saxena,

and Zhenkai Liang. ”the web/local” boundary is fuzzy: A security study
of chrome’s process-based sandboxing. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pages
791–804, 2016.

[15] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-
Erik Ekberg, and N Asokan. {PAC} it up: Towards pointer integrity
using {ARM} pointer authentication. In 28th {USENIX} Security

Symposium ({USENIX} Security 19), pages 177–194, 2019.
[16] Micah Morton, Jan Werner, Panagiotis Kintis, Kevin Snow, Manos

Antonakakis, Michalis Polychronakis, and Fabian Monrose. Security
risks in asynchronous web servers: When performance optimizations
amplify the impact of data-oriented attacks. In 2018 IEEE European

Symposium on Security and Privacy (EuroS&P), pages 167–182. IEEE,
2018.

[17] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve
Zdancewic. Softbound: Highly compatible and complete spatial memory
safety for c. In Proceedings of the 30th ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 245–258,
2009.

[18] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve
Zdancewic. Cets: compiler enforced temporal safety for c. In Pro-

ceedings of the 2010 international symposium on Memory management,
pages 31–40, 2010.

[19] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel mpx explained: A cross-layer analysis
of the intel mpx system stack. SIGMETRICS Perform. Eval. Rev.,
46(1):111–112, June 2018.

[20] Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Polychron-
akis. DynPTA: Combining static and dynamic analysis for practical
selective data protection. In 2021 IEEE Symposium on Security and

Privacy (SP), pages 1919–1937, May 2021.
[21] Tapti Palit, Fabian Monrose, and Michalis Polychronakis. Mitigating

data leakage by protecting memory-resident sensitive data. In Proceed-

ings of the 35th Annual Computer Security Applications Conference,
pages 598–611, 2019.

[22] Prabhu Rajasekaran, Stephen Crane, David Gens, Yeoul Na, Stijn Volck-
aert, and Michael Franz. Codarr: Continuous data space randomization
against data-only attacks. In Proceedings of the 15th ACM Asia

Conference on Computer and Communications Security, pages 494–505,
2020.

[23] Roman Rogowski, Micah Morton, Forrest Li, Fabian Monrose, Kevin Z.
Snow, and Michalis Polychronakis. Revisiting browser security in
the modern era: New data-only attacks and defenses. In 2017 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 366–
381. IEEE, 2017.

[24] Cole Schlesinger, Karthik Pattabiraman, Nikhil Swamy, David Walker,
and Benjamin Zorn. Modular protections against non-control data
attacks. Journal of Computer Security, 22(5):699–742, 2014.

[25] Jeff Seibert, Hamed Okhravi, and Eric Söderström. Information leaks
without memory disclosures: Remote side channel attacks on diversified
code. In Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, pages 54–65, 2014.
[26] Shellphish. Educational Heap Exploitation: how2heap . https://github.

com/shellphish/how2heap, 2019. Last accessed 6 January 2021.
[27] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung

Lee, Taesoo Kim, Wenke Lee, and Yunheung Paek. Hdfi: Hardware-
assisted data-flow isolation. In 2016 IEEE Symposium on Security and

Privacy (SP), pages 1–17. IEEE, 2016.
[28] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal

war in memory. In 2013 IEEE Symposium on Security and Privacy,
pages 48–62. IEEE, 2013.


