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Abstract—Software and hardware-based countermeasures for

protecting memory-resident data to prevent data-oriented attacks

suffer from high performance overhead due to a large number

of memory data objects and their pointers. In this ongoing

work, we propose a framework utilizing rule-based heuristics

to identify sensitive memory data and pointers automatically

from an application and protect those sensitive data and pointers

utilizing existing countermeasures. Our evaluation suggests that

an application contains as low as 3% sensitive data and needs

to protect less than 30% of its total data and pointers, on

average. Besides, our preliminary result shows that this prior-

itized protection reduces the performance overhead of existing

countermeasures by 50%.

With the advances toward practical code pointer protection
countermeasures and practical Control-Flow Integrity (CFI),
we anticipate a shift towards the manipulation of memory-
resident sensitive data or pointers as the attack vectors. In
recent research, we observe an uptick in Data-Oriented Attacks
(DOAs), also known as non-control attacks [12]–[14], [16],
[23], [24], [28] even though DOAs were introduced more than
a decade ago [6]. DOAs conform to CFI and manipulates
of memory-resident sensitive data or their pointers. Ideally,
DOAs [6], [12], [14] can modify all kinds of memory data to
change program behavior for leaking sensitive information [3]
or performing privilege escalations [8]. But the corruption
of data pointers [7] is often desirable. For example, the
manipulation of data pointers can lead to the leak of critical
information about an application’s address space layout [10],
[25], gadget stitching in Data-Oriented Programming-based
attacks [13], stack-based exploitations [6], and heap-based
exploitations [26].

Researchers have proposed both software and hardware-
based countermeasures to stop attackers from manipulating
memory-resident data or their pointers. However, software-
based countermeasures such as Data-Flow-Integrity (DFI) [5],
Data Space Randomization (DSR) [1], [4], [22], and memory
tagging [17], [18] usually suffer from performance overhead
(48-116% [17], [18]) due to inter-procedural DFI, encryption,
and masking. On the other hand, hardware-based counter-
measures (e.g., HDFI [27], Intel’s Control-Flow Enforcement
Technology, ARM Pointer Authentication (PA), and Intel’s

Memory Protection Extensions (MPX)) are efficient, but in
general, limited to one or a few platforms. Furthermore,
the overhead is non-negligible. For example, ARM Pointer
Authentication and Intel’s MPX cost on average around
19.5% [11], [15] and 50% [19] overhead, respectively, for
protecting data pointers.

The main reason for this runtime overhead is the huge
number of data objects and pointers in an application, on
average ⇠100x compared to code pointers in an application.
One solution for reducing this overhead is to identify the
sensitive data objects and prioritize them for protection, rather
than protecting all data objects. There are two approaches to
identifying sensitive data. One approach is manual, and the
other one is best effort semi-automatic. Prior work [12], [20],
[21] have suggested the manual earmarking of sensitive data.
However, manual earmarking is time-consuming and error-
prone. A few best-effort semi-automated approaches [14],
[16] can determine the criticality or sensitiveness of data.
But these works require traces of data accesses, including
traces for both normal and violating execution. As a result,
these works are not scalable due to the need for huge and
relevant execution and access traces. Besides, exercising all
the violating execution paths is challenging. Furthermore,
these techniques may not be application-agnostic and cannot
work with existing countermeasures. Thus, there is a need
for a scalable and platform- or application-agnostic automated
approach for identifying and prioritizing sensitive data or their
pointers.

In this ongoing work, we automate the identification and
prioritization of sensitive data objects through our Data and
Pointer Prioritization (DPP) framework. DPP uses shared
and reusable vulnerability patterns to identify and prioritize
sensitive data objects. These shared and reusable vulnerability
patterns enable DPP to prevent unknown and future DOAs.
DPP is also platform- or application-agnostic and adaptable
with existing countermeasures. DPP uses rule-based heuristics
to identify sensitive data objects.

We address two key challenges. First, it is challenging to
find a good representative set of rules with comprehensive



coverage since DOA are constantly evolving. To address the
challenge regarding the coverage and representativeness of
rules, we extract the rules by breaking down exploits into
common and reusable smaller vulnerability patterns. These
common patterns are applicable to many exploits and future or
unknown attacks. Second, it is also challenging to evaluate the
accuracy of our rules. Because to the best of our knowledge,
there exists no ground truth dataset of sensitive data objects,
which we can use to evaluate DPP. To evaluate the accuracy
and effectiveness of our rule-based heuristics, we construct the
ground truths of 33 sensitive data objects from 18 programs,
including five real-world applications, 13 relevant challenges
from DARPA CGC, and ten representative test cases from the
SAR dataset.

Our preliminary evaluation using manually constructed
ground truths of vulnerable data objects or pointers by iden-
tifying vulnerable data objects or pointers from vulnerable
datasets [2], [9] including 5 real-world applications shows
that less than 30% of the data objects and their pointers are
sensitive. Thus, in our testing environment, protecting less
than 30% of total memory-resident sensitive data or their
pointers is sufficient to protect the tested applications from
data-orient attacks. Besides, the rule-based identification of
sensitive memory data and pointers can lead to almost 50%
performance improvements in existing defenses in our tested
environments.
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