
Rosita++: Automatic Second-Order Leakage Elimination from

Cryptographic Code
Madura A. Shelton1, Niels Samwel3, Łukasz Chmielewski3,4, Lejla Batina3, Markus Wagner1, Yuval Yarom1,2

1. University of Adelaide, AU. 2. Data61, CSIRO, AU. 3. Radboud University, NL. 4. Riscure, NL.

Security of d-order implementations Methodology Introduction

Results

Conclusion

We demonstrated that by using new methods for root cause detection that

it is possible to apply code fixes to second-order masked implementations.

These methods are not tied to the model that we currently use in Rosita++

and can be used with any other model. Our target was to fix all detected

leakage and as such the improvement of performance was left as future

work. The performance can be improved by providing Rosita++ with the

global view of code fixes where avoidable code fixes could be removed by

optimizing the code fixes application process.

As devices interact with their operating environment, they can emit signals

that are correlated to the work it is performing at a given time. This

process might leak information that are required to be kept secret even-

though the mathematical primitives are proven to be secure. These

emissions can happen in any measurable quantity and are referred to as

‘side channels’. Past research show that power analysis, electro-

magnetism, acoustic, and photonic based side channels can be used to

recover secrets from cryptographic devices.

Countermeasures that were proposed against such attacks included

many techniques including hardware designs to reduce emissions, adding

noise to hide the signal, employing polymorphic code, and information

masking techniques. The most common among these is masking, where

secret values are split in to two more shares by mathematically combining

them with random values. Masking schemes ensure the theoretical

security of a cryptographic implementation. Yet, despite that masking

schemes often fail in practise to provide the theoretical guarantees.

The main cause for such failures is that an assumption called the

Independent Leakage Assumption (ILA, proposed by Renauld et al.) is

breached in practise. This happens due to unintended interactions that

happen between the intermediate values of an implementation. The

causes for such effects are micro-architectural details that are specific to

the devices, and mainly stem from the reuse of internal registers without

clearing them.

Fixing such leakage manually is a tedious job and requires expertise in

many disciplines. In Rosita, Shelton et al. demonstrated a code rewriting

engine that could apply code fixes to such implementations by employing

the power traces generated by an emulator. This method avoids the time

that is spent on physical experiments therefore is much faster than the

physical process.

The root cause detection for Rosita++ employs two different methods. The

first, eliminates each component of the power model and re-evaluates the

leakage to find offending components, when found the previously removed

components are used as root causes to drive the code fixed. The second

method uses a Monte Carlo simulation to find the sources of leakage.

Component elimination We the power model proposed by McCann et al

in ELMO with some modificatoins. It comprises of a number of

components that depend on the values from each execution trace of a

virtual machine. These values can depend on a single share or multiple

shares in combination. This combined with another share makes all three

shares complete and thus ends up leaky. A scenario of the power values

leading to a leak is shown in Figure 6.

 Can we fix them? Yes*

In Boolean masking, a d-order implementation is an implementation that

splits a sensitive value in to d+1 shares (v0,v1,v2,…vd). This is achieved by

combining the sensitive value (v) and d random values (v1,v2,…vd) such

that the first share (v0) is,

𝑣0 = 𝑣 ⊕ 𝑣1 ⊕ 𝑣2 ⊕ ⋯ ⊕ 𝑣𝑑
• To break a d-order implementation an eavesdropper needs to reveal all

d+1 shares.

• By using a single probe we can sample power values when the CPU

processes different intermediate values.

• Theoretically, a first-order masked implementation should not show

leakage with a single probe. But due to ILA breaches information from

more than a single intermediate value is available through a single

sample.

• Using a single probe is the same as a univariate acquisition were we

acquire samples of a single variable at a set interval,

• The samples acquired in a univariate setting can be used for bivariate

analysis by considering the combinations between pairs of samples

(i.e. 𝐶𝑛
𝑟). This grows quadratically with respect to the sample count.

 Can we observe second-order leakage on

a second-order masked implementation? Yes!

Figure 2. 3 share Xoodoo (chi function)

second-order leakage (TVLA)

Figure 3. 3 share Present (S-Box lookup)

second-order leakage (TVLA)

Figure 5. 3 share Present second-order

leakage (TVLA)

Figure 4. 3 share Xoodoo second-order

leakage (TVLA)

As shown in Figure 2 and Figure 3 we evaluated two second-order

masked implementations by using bivariate Test Vector Leakage

Assessment (TVLA). Before running the second order evaluation we made

sure that the implementations do not show leakage in the first order by

running first-order TVLA on the same traces. The number of traces that

were used was 2 million for each implementation. The traces were

collected from an ARM Cortex-M0 MCU on STM32F030 Discovery board.

Figure 6. Components contributing to a leak

Monte Carlo We use the slower Monte Carlo method to find leakage

which runs for a set number of iterations when the first method fails. In

each iteration a random set of components are selected and the leakage

is evaluated using TVLA. If the power values from a set of components

becomes leaky, a score of 1 is awarded to each component that was in

the set. This continues for a set number of iterations and finally all outliers

are selected from the list of scores for each component. Each component

that ended with a high score has a higher probability of contributing a

share or a combination of shares to the power model.

* Figure 1. Rosita(++) workflow

