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Proof Creation

Definition: For a prover T and model W, a valid Proof-of-Learning

(PolL) is a tuple of training-step-ordered sets (W, /I, H, A):
. W: Model weights at steps of training

a
b. I: Data instance information (e.g., batch indices)

c. H: Signatures of data instances in | (e.g., hashes of batches)

d. A: Auxiliary information (e.g., training hyperparameters)

Store P; = (0,1,H,A) every step, store P, = (W,I,H, A) every k step
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Proof Verification & Correctness
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1. Kolmogorov—Smirnov (KS) test: prevent arbitrary initialization
* p-value goes under 0.01 with less than 10 gradient updates

2. Step-wise reproduce: bound entropy In training

 entropy increases linearly to number of training steps
 reproducing error for a single step Is near-zero
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3. Top-Q verification: save computational cost

* Valid updates tend to have small magnitude to avoid overshooting during
gradient descent

Security Analysis
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e Honest Spoof: tries to create a fully valid PoL

e Dishonest Spoof: tries to create a partially invalid PoL that passes the verification

Dishonest Spoof Example: Directed Retraining

* There will exist a large gap and thus detected by top-Q verification (since the stolen model
does not have any connection to the model parameters in the valid proof)

Valid PoL Concatenation

Honest Spoof Example: Inverse Gradient Methods

* Inverting gradient descents Is more expensive than training, and has higher entropy
(meaning It leads to larger verification error)

Recall:
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Now:
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Computational & Storage Overhead

k: Number of steps between recording weights

Q: Number of checks by verifier

Verification Computational Cost:
O(cost(verify Pi)- Q - k)

Verification Storage Cost:
O(size(P) - #epochs - #minibatches / k)
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