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Multiple privacy-preserving machine learning approaches have been developed to preserve the 
privacy of the data in machine learning applications. One such approach is using homomorphic 
encryption which allows for computation over encrypted data. Common deep neural networks 
architectures, such as convolutional and fully connected networks, have been adapted for use 
over encrypted data. However, there is very little work on recurrent neural networks (RNNs) and 
existing solutions for running RNNs over encrypted data require communication between the 
data owner and the machine learning service provider. In this work, we introduce parallel RNN 
blocks, an RNN architecture that can be run on homomorphically encrypted data without 
requiring client server interaction. We evaluate our architecture on a real-world dataset of online 
product reviews and IMDb movie review data. Our results are promising and show that we can 
achieve 88.8% F1 score on the product reviews. The model generalizes well to IMDb data set with 
74.36% F1 score using our proposed architecture. In both cases the results are within 3 
percentage points of the plaintext versions.

Abstract
Most operations in neural networks can performed on encrypted data despite the limitations. The only 
part that can not be evaluated within the HE constraints are the activation functions. We use the 
approach by Hesamifard1 to approximate the Tanh activation with a  degree 3 polynomial. 

To deal with the depth of the network, we propose an alternative solution for running simple RNNs over 
encrypted data. We want to keep the strengths of RNNs but not at the cost of discarding information. We 
split the input sequence into multiple sub-sequences of equal length. Each of these sub-sequences is fed 
into a simple RNN layer. The output of the simple RNN layers is concatenated and fed into a fully 
connected layer, see Figure 2. We refer to these RNN layers as blocks or parallel blocks. There are at least 
two ways of setting up the simple RNNs within the blocks. Every simple RNN could have its own 
independent weights, or the weights could be shared between all the blocks. While no data is discarded 
from the input sequence there is some loss of information at the block boundaries. In a regular simple 
RNNs the network has the entirety of the input sequence in its internal state. In our architecture the 
blocks have no input from the other blocks. However, our experiments show that the fully connected 
layer following the concatenation layer mitigates the effect for the most part.

The Proposed Approach

On encrypted data the client needs to perform the text preprocessing, including the embedding. By using 
SIMD batching we can process up to 32,768 instances at once by encrypting the same dimension of 
multiple instance in the same ciphertext. The crypto parameters are chosen based on the of splits so that 
we achieve least 128-bit security. Due to memory constraints, we run models with 64, 32 and 16 splits. The 
resource requirements increase as the number of splits decreases. Running the model on plaintext, using 
the same batch sizes, shows an increase in resources required by the encrypted version of 37-109x times, 
see Figure 5.
Prior work5 on RNN inference using CKKS relies on interactive phases for noise removal. Our architecture 
does not need an interactive phase. To compare our approach to interactive approaches we implement the 
interactive approach. For a fair comparison we use the same crypto parameters we use in the previous 
experiments. The interactive approach preforms slower at but requires less memory (Figure 6). 
Additionally, 2 to 3 times the data needs to be transferred on between client and server, using the 
interactive approach. The interactive approach needs to transfer 200 GB per batch in worst case, whereas 
our approach only requires 100 GB of data transfer.   

RNN Blocks on Encrypted Data
RNNs using Homomorphic Encryption 

Homomorphic encryption (HE) schemes are like other asymmetric encryption schemes as in they 
have a public key 𝑝𝑘 for encrypting (𝐸𝑛𝑐) data and a private or secret key 𝑠𝑘 for decryption 
(𝐷𝑒𝑐). Additionally, HE schemes also have a so-called evaluation function, 𝐸𝑣𝑎𝑙. This evaluation 
function allows the evaluation of a circuit 𝐶 over encrypted data without the need for decryption. 
Given a set of plaintexts {𝑚𝑖}0

𝑛 and their encryption {𝑐𝑖}0
𝑛 = 𝐸𝑛𝑐(𝑝𝑘, {𝑚𝑖}0

𝑛) the circuit 𝐶 can be 
evaluated as: 𝐷𝑒𝑐(𝑠𝑘, 𝐸𝑣𝑎𝑙(𝑝𝑘, 𝐶, 𝑐0,⋯ , 𝑐𝑛)) = 𝐶(𝑚0, ⋯ ,𝑚𝑛). We use the CKKS1 scheme 
allows supports computation on rational numbers instead of just integers. When operations are 
performed on the ciphertexts the noise grows and when it passes a certain threshold the 
ciphertext can not be decrypted correctly anymore. Multiplications add much more noise than 
additions. A standard RNN (Figure 1) with weights 𝑤, recurrent weights 𝑣 and activation function
𝑓 can be viewed as:

𝑠𝑡 = 𝑓 𝑥𝑡 ⋅ 𝑤 +⋯𝑓 𝑥1 ⋅ 𝑤 + 𝑓 𝑥0 ⋅ 𝑤 ⋅ 𝑣 … ⋅ 𝑣
The initial input 𝑥0 is repeatedly multiplied by the recurrent weights 𝑣 and during the application 
of 𝑓. This repeated multiplication, and the resulting noise accumulation, is the main limiting 
factor for RNNs over HE data. The number of multiplications in RNNs is dependent on the length 
of the inputs sequence. In other architectures, such as CNNs or fully connected networks, the 
number of multiplications is independent from the inputs.  

Figure 1. A Standard RNN Figure 2. Our Proposed Parallel RNN Blocks
Architecture

Figure 3. Performance comparison of different models and activations functions

Figure 4. Impact of the number of splits on the Model Performance

Figure 5. Running-time and Memory requirements on encrypted and plain data

Figure 6. Comparison with interactive approaches

Text Classification using Parallel RNN Blocks
The ultimate goal is to run parallel RNN blocks on encrypted data. First, we assess the performance of 
our architecture on plain data. We train multiple models on a dataset of Amazon product reviews2 and 
additionally test on the IMDb3 movie reviews.  The task is to perform sentiment analysis based on the 
user rating. We group one- and two-star reviews into the negative class and four- and five-star reviews 
into the positive class. Three-star reviews are filtered out. To vectorize the words we use pretrained 100-
dimensional Glove4 embeddings. We truncate reviews to 64 words. The recurrent layers consist of 128 
units for both the Simple RNN and the parallel blocks. In the case of shared individual weights, we reduce 
the number of units in the recurrent layers to create models with a similar number of parameters. We 
also create a large model with individual  weights, where we do not reduce the number of units. The 
models perform within 5-10% of the Simple RNN with Tanh baseline model (Figure 3). The RNN blocks 
models are slightly weaker at generalizing to data from a different distribution, as shown with the IMDb 
data. Especially the models with individual weights suffer a greater drop than the models with shared 
weights. As the number of splits increases (Figure 4) the performance of the model decreases slightly. 
The performance decrease is greater for models with Tanh activation. 


