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1.  Synergy missing between legal
and tech. experts

2. Complex interplay between data
and parameters

Concrete Problem: Unlearn data from
trained ML models (e.g., DNNs) such
that removal guarantee is
comprehensible

Prior Approaches

Differentially Private
Learning [Abadi et al.,
2016]

Statistical Query
Learning [Cao et al.,
2015]

1. Requires €=0 for 1. Applicable for simple

compliance models

2. Strongly influences 2. Can make limited
accuracy number of queries

3. Guarantee is 3. No known algorithm
probabilistic for DL models
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Advantage of Sharding & Slicing

Steady improvement
with sharding
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1. The adaptive Poisson
Binomial strategy is
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Sharding Strategy

Can reduce analytical
retraining time.

Number of Points to Retrain
(1000x)
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