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How do we train a model without violating privacy or regulatory constraints?
Federated Learning:
* A group of parties collaboratively trains a machine learning model without
sharing/revealing training data “ll“
* Only model updates, such as model weights or gradients are shared
* More data better models (Google coined the term 1n 2016)
Existing Challenges:
* Data heterogeneity: each party may have a dissimilar data distribution (NON-IID)
* Byzantine threats:
* Byzantine failures: parties crash/stall when sending updates, computation errors
* Byzantine attacks: the existence of malicious parties
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How to deal with Byzantine threats in federated learning without compromising model
performance?
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» INTRODUCTION %@

* Robust statistics:
* Coordinate median [1] - use coordinate-wise geometric median as the aggregated gradient
* Geometric median of means, trimmed mean, repeated median
* Pruning updates from malicious parties:
* Krum [2] - chooses one party’s gradients having the smallest £, norms with all other parties’ gradients, computation
complexity O (n?)
* Based on Krum: Multi-Krum and Bulyan
* Others:
 Distributed momentum [3]
Krum, median)
* Residual-based reweighting [4] — reweights updates by party based on gradient residuals from a repeated median
regression line

* FoolsGold [5] — adaptive learning rate for each party based on contribution similarity

— uses momentum at the party side to strengthen existing robust aggregation algorithms (1.¢.

Drawbacks: Rely on assumptions of bounded honest gradients, which DOES NOT hold in NON-IID case.

> PILOT STUDY & N - o

Aisting robust aggregation methods failed in NON-IID case
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» OUR SOLUTION - LEGATO

Algorithm 4: FEDERATED LEARNING WITH LEGATO.

1 Aggregator Maximum global round K, and a learning rate policy {nr }.
Initialize wy;
forround k =1, ...
G¥ « new list;
Query party p € P with the current global model weights wy_; for its
current gradient GI'§ and add it to G¥;

// Aggregates gradients
6 G*.. =LEGATO(G*) // (Algorithm 5)

7 Wi = Wi-1 — Nk G ]

8 return wg

, K do

ni & W N

model weights wy

Algorithm 5: LEGATO. An aggregation algorithm to aggregate gradients

at round k.

9 Party Each party p € P owns its local dataset, D, training batch-size B and the current 9

10 Initialize the local model with wy = wy;
11 g =VE&(wy;B)|;// € denotes the loss function.
12 | return g

\ Threat Model:

* The aggregator 1s honest and wants to detect malicious or erroneous
gradients received during the training process.

Proposition 1. LEGATO has time complexity O(dn + d).
Proposition 2. LEGATO has space complexity O(dnm).

n: number of parties; d: layer dimension; m: size of the gradient log.

e

~ * Parties may be dishonest and may collude with each other to evade detection.

1 Aggregator A list of current parties’ gradients G*, a log of recent past party’s gradients

with maximum size m GLog = [GF—™, gk—™*1 ..

~

G* =[Gk, Gk, ..., Gk]
2 if £ =1 then
3 Initialize an empty log GLog;
4 else
5  UpdateGradientLog(G Log, G*);
or G* in GLog do
for Each party p in P do
. | xp =l GE |l2;
for each layer | do
6 \\ Pk ”[gll g2l ----- gs,l]HZ;
1 [>x0,X15---sxn 1
11 for ach layer [ do
w; <« Normalize(
\/Va.r(Pl,

14

G:, —wGk + Xyt

13 f[Lp in |P| and each layer I do

p.l

ka,)

15 return gagg — Zpep G*

p.lI’

17
18
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16(UpdateGradientLog(GLog, G*):

GLog <« GLog + G*;
if len(GLog) > m then
GLog <+ GLog]|1 :]
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, G where

Evaluating robustness
factor of each layer

Layerwise gradient
reweighing

Maintenance of the log
of historic gradients
from parties

= —— T

> PRELIMINARY EXPERIMENTS [
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Gaussian attack, 11D, 4 Byzantlne partles

Non-attack, NON-IID data, WITHOUT Byzantine parties

Experimental setup: MNIST, 25 total parties, learning rate= .03, batch

size = 50, 1K points per party, log size 10. For NON-IID case, each

party only has data from one class.

Attacks:

* Gaussian attack [6] - effective, common, replies randomly drawn
from N (O, al)

* Fall of Empires (FoE) [7] — designed to break Krum, a group of parties
to craft the attack withu; = u, = =u, = —e/mY", v

U=1{u,...,un} byzantine gradients V= {vi,...,vm} honest gradients
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Gaussian attack, NON-IID data, 4 Byzantine parties

Robust algorithms fail to

produce good models, g
LEGATO is not affected §

by this attack!

FoE attack, IID data, 11 Byzantine parties, € = 0.001
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