

LEGATO: A LayerwisE Gradient AggregaTiOn Algorithm for Mitigating Byzantine Attacks in Federated Learning

Kamala Varma, Yi Zhou, Nathalie Baracaldo, and Ali Anwar, IBM Research, San Jose, CA, USA

> INTRODUCTION

How do we train a model without violating privacy or regulatory constraints? **Federated Learning**:

- A group of parties collaboratively trains a machine learning model without sharing/revealing training data
- Only model updates, such as model weights or gradients are shared
- More data better models (Google coined the term in 2016)

Existing Challenges:

- Data heterogeneity: each party may have a dissimilar data distribution (NON-IID)
- Byzantine threats:
- Byzantine failures: parties crash/stall when sending updates, computation errors
- Byzantine attacks: the existence of malicious parties

How to deal with Byzantine threats in federated learning without compromising model performance?

RELATED WORK (

• Robust statistics:

- Coordinate median [1] use coordinate-wise geometric median as the aggregated gradient
- Geometric median of means, trimmed mean, repeated median
- Pruning updates from malicious parties:
- Krum [2] chooses one party's gradients having the smallest ℓ_2 norms with all other parties' gradients, computation complexity $\mathcal{O}(n^2)$
- Based on Krum: Multi-Krum and Bulyan
- Others:
- Distributed momentum [3] uses momentum at the party side to strengthen existing robust aggregation algorithms (i.e. Krum, median)
- Residual-based reweighting [4] reweights updates by party based on gradient residuals from a repeated median regression line
- FoolsGold [5] adaptive learning rate for each party based on contribution similarity

Drawbacks: Rely on assumptions of bounded honest gradients, which DOES NOT hold in NON-IID case.

> PILOT STUDY

Existing robust aggregation methods failed in NON-IID case

Certain layers (conv more vulnerable than other layers (dense) to Byzantine attacks

Exp. Setup: each parties with 1K data points from MNIST. Byzantine parties executing a Gaussian attack with $\mu = 0$ and $\sigma = xx$

[6] Xie, Cong, Oluwasanmi Koyejo, and Indranil Gupta. "Generalized byzantine-tolerant sgd." *arXiv* Ramchandran, K., and Bartlett, P. Byzantine-robust distributed learning: Towards optimal statistical rates. arXiv preprint arXiv:1803.01498 [2] Blanchard, P., Guerraoui, R., Stainer, J., et al. Machine learning with adversaries: Byzantine tolerant gradient descent. NIPS, pp. 118–128, 2017. preprint arXiv:1802.10116 (2018). [3] El-Mhamdi, E., Guerraoui R., and Rouault, S., Distributed Momentum for Byzantine-resilient Learning. *arXiv preprint arXiv:2003.00010*, 2020. [7] Xie, Cong, Oluwasanmi Koyejo, and Indranil Gupta. "Fall of empires: Breaking Byzantine-tolerant [4] Fu, S., Xie, C., Li, B., and Chen, Q., "Attack-resistant federated learning with residual-based reweighting," arXiv preprint arXiv:1912.11464, 2019. SGD by inner product manipulation." *Uncertainty in Artificial Intelligence*. PMLR, 2020. [5] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated learning poisoning. arXiv preprint arXiv:1808.04866, 2018.

			OU
	/-	Al	gorith
	-		ggrega
		2 3	
		4 5	
		5	
		6	
		7	
		8	
			<mark>arty</mark> E model
		10	
		11 12	
	• • Pr Pr	The gra Par opo	at Mo e aggi dients dients rties m osition osition
			PRE
			Gauss
			Gradient
	0.0		Krum σ Coordina
	0.8 -		LEGATO
<u>ک</u>	0.6 -		
Accuracy			
	0.4 -		M
	0.2 -		" א
		0	

Attacks:

- from $N(0, \sigma I)$

JR SOLUTION - LEGATO

thm 4: Federated Learning with LEGATO.			
gator Maximum global round K, and a learning rate policy $\{\eta_k\}$.			
Initialize w_0 ;		Aggreg with m	
for round $k = 1, \ldots, K$ do		$\mathcal{G}^k =$	
$\mathcal{G}^k \leftarrow \text{new list};$	2	$\int \mathbf{g} = \mathbf{k}$	
Query party $p \in \mathcal{P}$ with the current global model weights w_{k-1} for its	2 3		
current gradient G_p^k and add it to \mathcal{G}^k ;	3 4	else	
// Aggregates gradients	4 5		
$\mathcal{G}_{agg}^{k} = \text{LEGATO}(\mathcal{G}^{k}) // \text{(Algorithm 5)}$	5		
	6	for	
$w_k = w_{k-1} - \eta_k \mathcal{G}_{agg}^k;$	7		
return <i>w_K</i>	8		
Each party $p \in \mathcal{P}$ owns its local dataset, \mathcal{D}_p , training batch-size B and the current	9		
l weights w_k	10		
Initialize the local model with $w_0 = w_k$;	10		
$g = \nabla \ell(w_0; B)$; // ℓ denotes the loss function.			
return g	11	for each	
	12	Wl	
odel:	13	for p in	
	14	G_p^*	
gregator is honest and wants to detect malicious or erroneous			
ts received during the training process.	15	return	
may be dishonest and may collude with each other to evade detection.	16	Update	
	17	GL	
on 1. LEGATO has time complexity $O(dn + d)$.	18	if <i>l</i>	
on 2. LEGATO has space complexity O(dnm).	19	L	

parties; d: layer dimension; m: size of the gradient log.

CLIMINARY EXPERIMENTS

ssian attack, IID, 4 Byzantine parties t averaging $\sigma = 20$

LEGATO catches up after 200 rounds

Experimental setup: MNIST, 25 total parties, learning rate= .03, batch size = 50, 1K points per party, log size 10. For NON-IID case, each party only has data from one class.

• Gaussian attack [6] - effective, common, replies randomly drawn • Fall of Empires (FoE) [7] – designed to break Krum, a group of parties

to craft the attack with $u_1 = u_2 = \cdots = u_n = -\epsilon/m\sum_{i=1}^m v_i$ $\mathcal{U} = \{u_1, \dots, u_n\}$ byzantine gradients $\mathcal{V} = \{v_1, \dots, v_m\}$ honest gradients

