INTRODUCTION

How do we train a model without violating privacy or regulatory constraints?

Federated Learning
- A group of parties collaboratively trains a machine learning model without sharing/revealing training data.
- Only model updates, such as model weights or gradients, are shared.
- More data better models (Google coined the term in 2016)

Existing Challenges
- Data heterogeneity: each party may have a dissimilar data distribution (NON-IID)
- Byzantine threats: parties crash/stall when sending updates, computation errors
- Byzantine attacks: the existence of malicious parties

How to deal with Byzantine threats in federated learning without compromising model performance?

RELATED WORK

- Robust statistics:
 - Coordinate median [1] - use coordinate-wise geometric median as the aggregated gradient
 - Geometric median of means, trimmed mean, repeated median
- Pruning updates from malicious parties:
 - Krum [2] - chooses one party's gradients having the smallest ℓ_2 norms with all other parties' gradients, computation complexity $O(n^2)$
 - Based on Krum: Multi-Krum and Bulyan
- Others:
 - Distributed momentum [3] - uses momentum at the party side to strengthen existing robust aggregation algorithms (i.e. Krum, median)
 - Residual-based reweighting [4] - reweights updates by party based on gradient residuals from a repeated median regression line

Drawbacks: Rely on assumptions of bounded honest gradients, which DOES NOT hold in NON-IID case.

PILOT STUDY

Existing robust aggregation methods failed in NON-IID case

OUR SOLUTION - LEGATO

Algorithm 4: Federated Learning with LEGATO.

1. **Aggregator** Maximum global round K, and a learning rate policy (η_t).
2. Initialize w_0.
3. for round $k = 1, \ldots, K$ do
 - Query party $q_k \in P$ with the current global model weights w_k, for its current gradient g_{q_k} and add to its g^2.
 - // Aggregated gradient $g^2 = \text{LEGATO}(g^2)$ // (Algorithm 5)
4. return w_K.

- **Party**
 - Each party $p \in P$ owns its local dataset, D_p, training batch size B and the current model weights w_k.
 - Initialize the local model with $w_0 = w_1$.
 - $g_0 = \nabla \ell(w_0, B)$ // ℓ denotes the loss function.
 - return g_0.

Threat Model
- The aggregator is honest and wants to detect malicious or erroneous gradients received during the training process.
- Parties may be dishonest and may collude with each other to evade detection.

Proposition 1. LEGATO has time complexity $O(dh + d)$.

Proposition 2. LEGATO has space complexity $O(dmn)$.

n: number of parties; d: layer dimension; m: size of the gradient log.

PRELIMINARY EXPERIMENTS

Gaussian attack, IID, 4 Byzantine parties

Non-attack, NON-IID data, WITHOUT Byzantine parties

LEGATO catches up after 200 rounds

Gaussian attack, IIDs, 4 Byzantine parties

LEGATO consistently performs better than baselines for NON-IID case

Impact of Byzantine attacks

Fooling attacks

- Gradient averaging
- Coordinate median
- Re scaling

LEGATO consistently performs better than baselines for NON-IID case

<table>
<thead>
<tr>
<th>Layer Type</th>
<th>LEGATO Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Connected</td>
<td>8.4%</td>
</tr>
<tr>
<td>Convolutional</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Resilience of LEGATO

- Maintains performance in NON-IID data with Byzantine attacks.