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Ø INTRODUCTION

Ø RELATED WORK

How do we train a model without violating privacy or regulatory constraints? 
Federated Learning: 
• A group of parties collaboratively trains a machine learning model without 

sharing/revealing training data
• Only model updates, such as model weights or gradients are shared
• More data better models (Google coined the term in 2016)

Existing Challenges:
• Data heterogeneity: each party may have a dissimilar data distribution (NON-IID) 
• Byzantine threats: 
• Byzantine failures: parties crash/stall when sending updates, computation errors 
• Byzantine attacks: the existence of malicious parties

How to deal with Byzantine threats in federated learning without compromising model 
performance?

Aggregator (𝒜)

Party 𝑃!

Party 𝑃" Party 𝑃#

Party 𝑃$

Party 𝑃%Party 𝑃&

• Robust statistics: 
• Coordinate median [1] - use coordinate-wise geometric median as the aggregated gradient
• Geometric median of means, trimmed mean, repeated median

• Pruning updates from malicious parties:
• Krum [2] - chooses one party’s gradients having the smallest ℓ! norms with all other parties’ gradients, computation 

complexity 𝒪 𝑛!
• Based on Krum: Multi-Krum and Bulyan

• Others:
• Distributed momentum [3] – uses momentum at the party side to strengthen existing robust aggregation algorithms (i.e. 

Krum, median)
• Residual-based reweighting [4] – reweights updates by party based on gradient residuals from a repeated median 

regression line
• FoolsGold [5] – adaptive learning rate for each party based on contribution similarity

Drawbacks: Rely on assumptions of bounded honest gradients, which DOES NOT hold in NON-IID case.

Ø PILOT STUDY
Existing robust aggregation methods failed in NON-IID case
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Exp. Setup: each parties with 1K data points 
from MNIST. Byzantine parties executing a 
Gaussian attack with μ= 0 and σ= xx

Certain layers (conv 
1 in right figure) are
more vulnerable 
than other layers 
(dense) to 
Byzantine attacks 

Ø OUR SOLUTION - LEGATO
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Threat Model:
• The aggregator is honest and wants to detect malicious or erroneous 

gradients received during the training process. 
• Parties may be dishonest and may collude with each other to evade detection. 

Proposition 1. LEGATO has time complexity 𝒪 𝑑𝑛 + 𝑑 .
Proposition 2. LEGATO has space complexity 𝒪(𝑑𝑛𝑚).

n: number of parties; d: layer dimension; m: size of the gradient log.  

Ø PRELIMINARY EXPERIMENTS

Experimental setup: MNIST, 25 total parties, learning rate= .03, batch 
size = 50, 1K points per party, log size 10. For NON-IID case, each 
party only has data from one class.
Attacks:
• Gaussian attack [6] - effective, common, replies randomly drawn 

from 𝑁(0, 𝜎𝐼)
• Fall of Empires (FoE) [7] – designed to break Krum, a group of parties 

to craft the attack with 𝑢! = 𝑢" = ⋯ = 𝑢# = − ⁄𝜖 𝑚∑$%!& 𝑣$[6] Xie, Cong, Oluwasanmi Koyejo, and Indranil Gupta. "Generalized byzantine-tolerant sgd." arXiv
preprint arXiv:1802.10116 (2018).
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Gaussian attack, IID, 4 Byzantine parties Non-attack, NON-IID data, WITHOUT Byzantine parties

Robust algorithms fail to produce good models 
for NON-IID case!

LEGATO catches up after 200 rounds

Gaussian attack, NON-IID data, 4 Byzantine parties

LEGATO consistently performs better than 
baselines for NON-IID case!

FoE attack, IID data, 11 Byzantine parties, 𝜖 = 0.001

Robust algorithms fail to 
produce good models, 

LEGATO is not affected 
by this attack!


