
Keep the Dirt: Tainted TreeKEM, Adaptively and Actively Secure Continuous Group Key Agreement
Karen Klein1 Guillermo Pascual-Perez1 Michael Walter1 Chethan Kamath Margarita Capretto2 Miguel Cueto1 Ilia Markov1 Michelle Yeo1 Joël Alwen3 Krzysztof Pietrzak1

IST Austria(1), Universidad Nacional de Rosario(2), Wickr Inc.(3)

Introduction

This work focuses on improving the efficiency of existing Continuous
Group Key Agreement (CGKA) protocols, underlying efficient secure
group messaging. In particular, it builds on TreeKEM, the proto-
col by the IETF working group on Message Layer Security (MLS).
We formalize and analyze a modification named Tainted TreeKEM
(TTKEM).

Continuous Group Key Agreement (CGKA)

Interactive protocol allowing a group of n users to agree on a
common sequence of keys with the following characteristics:
•Dynamic membership: add and remove group members.
•Asynchronous: no assumptions on users online behaviour.
•Forward secret and Post-Compromise Secure.
Further, efficient key updates (logarithmic in n).

Ratchet trees

Basic data structure used by TreeKEM and TTKEM.
•Leaves: associated to users.
•Nodes: associated with PKE key-pairs.
•Edges: knowledge of source secret key implies knowledge of sink
secret key.
⇒ users know secrets keys on their path to the root.

A B C D E F G H

group key

———————
Key update by party A

• chooses and encrypts fresh keys
• removes old keys

Hash derivation
Encryption

A

Only log(n) encryptions needed to communicate new keys to group.

TreeKEM

A HA

H is removed by A by blanking, i.e. deleting the keys
on H’s path. Blanks might induce extra encryptions
in future updates.

Tainted TreeKEM (TTKEM)

A H
A removes H by sampling new keys for nodes on H’s
path. Those nodes become tainted by A, and have to
be updated again when A updates or is removed.

Efficiency

We are interested in the communication efficiency of equivalent protocol executions in TreeKEM and TTKEM.
TreeKEM recent versions bundle several group operations into one. We compared TTKEM against two variants,
one more and one less efficient than TreeKEM, resulting from different ways of bundling operations.

Setting I

•Adds & removes performed by all users uniformly.
•Two cases based on users updating distribution.

Setting I.I: Average cost with uniform updates.

Setting I.II: Average cost with zipf updates.

Setting II

•Adds & removes only by small set of administrators.
•Trade-off between cost for admins and non-admins.

Average cost for non-administrators.

Average cost for administrators.

Security

Adversarial Model.
We consider an adversary that:

•Can control protocol execution and corrupt users
adaptively.
•Corrupts throughout time-windows:
• leaks all user state, including randomness used while corrupted.

• Is "partially" active:
• Full network control.
•Not allowed to craft messages.
•Wins if can distinguish group key from random.
• Exclude trivial challenge: define safe predicate.

Theorem 1 (Standard Model):
Enc ε-IND-CPA secure, H ε-pseudorandom

⇒ TTKEM ε ·Qlog(n)-CGKA-secure.
Theorem 2 (Random Oracle Model):
Enc ε-IND-CPA secure, H random oracle

⇒ TTKEM ε · (Qn)2-CGKA-secure.
where Q - # of operations; n - # of users.

Results Overview

•Formalized Tainted TreeKEM, a CGKA protocol
using tainting instead of blanking.

•Efficiency simulations showing TTKEM is more
efficient than TreeKEM for natural distributions.

• Security proofs for TTKEM both in standard model
and ROM that extend to TreeKEM.
•First adaptive proof for any CGKA with
polynomial loss.

Acknowledgements

Several authors were funded by the European Research Council (ERC)
under the European Union’s Horizon2020 research and innovation
programme, either under the TOCNeT (No. 682815) or the Marie
Skłodowska-Curie (No. 665385) Grant Agreements.

Contact: gpascual@ist.ac.at

mailto:gpascual@ist.ac.at

