Detecting AI Trojans Using Meta Neural Analysis Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, Bo Li

Department of Computer Science, University of Illinois at Urbana-Champaign

Trojan Attacks in Machine Learning

Sharing Machine Learning Models

- Sharing machine learning (ML) models is an effective and efficient way to apply ML algorithms.
- But using shared models will lead to security issues (e.g., Trojan attack) if <u>the model producer is untrusted</u>.

Trojan (backdoor) Attack

- On normal inputs, the model produces correct results.
- On inputs with a <u>trigger pattern</u>, the model produces malicious results as <u>controlled by the adversary</u>.

Our contribution

- We propose <u>Meta Neural Trojan Detection (MNTD)</u>, a general framework to detect Trojaned models.
- We show that MNTD achieves state-of-the-art detection performance and efficiency against various Trojan attacks.
- We consider the adaptive attack against MNTD and propose a robust algorithm as countermeasure.

Detection Setting

Attacker: train a Trojaned ML model and share it with others.

- Full access to training data.
- Full access to training process.

Defender: given a model, determine whether it is Trojaned or not.

- No knowledge of the attack approach.
- No access to training data.
- Black-box access to the model.
- A small set of clean data.

Approach

Pipeline:

- Train a set of <u>shadow models</u> consisting of benign NNs and Trojaned NNs.
- Train a <u>meta-classifier</u> to distinguish between benign and Trojaned models.
- 3. Apply the meta-classifier to predict the target model.

Step 1: Generate the Shadow Models

- Sample different Trojans parametrized by: 1) mask of trigger location, 2) trigger pattern, 3) trigger transparency, 4) target malicious behavior.
- Use poisoning attack to generate corresponding Trojaned models.

Step 2: Train the Meta Classifier

<u>Feature extraction function</u>: transform a NN f(x) into a numerical feature vector.

- Choose a set of queries (chosen inputs) $\{x_1, x_2, \dots, x_k\}$ on the NN and use the concatenated output as the feature: $\mathcal{R}(f) = [[f(x_1) || f(x_2) || ... || f(x_k)]].$
- Query Tuning: simultaneously fine-tune the query set when we train the metaclassifier.

$$\underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{m} L\left(META(\mathcal{R}_{i};\theta), b_{i}\right)$$

$$\{\mathbf{x}_{1}, \dots, \mathbf{x}_{k}\} = 1$$

Step 3: Detect the Target Model

Feed the query set into the target model to get the feature vector, then use the meta-classifier to determine whether the target model is Trojaned or not.

Examples of the generated Trojan settings.

We tried some hand-crafted pattern which is not modelled by our Trojan distribution, and show that our model can still detect these Trojans:

In addition, our appr efficient at inference it requires a long tim preparation.

Defense against Adaptive Attack

- our algorithm and achieves some robustness against adaptive attacks.

J L L I N O I S

MNIST			CIFAR-10		
Mask	Trojaned Example	Detection AUC	Pattern mask	Trojaned Example	Detection AUC
ć	5	96.73%	ć		89.38%
	5	98.74%			93.09%
	5	99.80%			97.57%
2	5	99.01%	\bigcirc		93.82%
ji D	S	99.93%	/©	1	97.32%

7 •	Approach	Time (sec)
roach is very	AC	27.13
	NC	57.21
e stage, although	Spectral	42.55
no for offling	STRIP	738.5
le loi omme	MNTD	$f 2.629 imes 10^{-3}$
	MNTD (offline preparation time)	$\sim 4096 \times 12 + 125$

We find that adaptive attackers, who know our model and algorithm, can designed tailored attack and evade the detection with >99% probability. We propose a robust version of MNTD which incorporates randomness in

