Trojan Attacks in Machine Learning

Sharing Machine Learning Models
- Sharing machine learning (ML) models is an effective and efficient way to apply ML algorithms.
- But using shared models will lead to security issues (e.g., Trojan attack) if the model producer is untrusted.

Trojan (backdoor) Attack
- On normal inputs, the model produces correct results.
- On inputs with a trigger pattern, the model produces malicious results as controlled by the adversary.

Approach

Intuition: train a meta-classifier over neural networks (NN) to predict certain property of them.

Pipeline:
1. Train a set of shadow models consisting of benign NNs and Trojaned NNs.
2. Train a meta-classifier to distinguish between benign and Trojaned models.
3. Apply the meta-classifier to predict the target model.

Step 1: Generate the Shadow Models
1. Sample different Trojans parametrized by:
 1) mask of trigger location, 2) trigger pattern, 3) trigger transparency, 4) target malicious behavior.
2. Use poisoning attack to generate corresponding Trojaned models.

Step 2: Train the Meta Classifier
- Feature extraction function: transform a NN $f(x)$ into a numerical feature vector.
- Query Tuning: simultaneously fine-tune the query set when we train the meta-classifier.

Step 3: Detect the Target Model
- Feed the query set into the target model to get the feature vector, then use the meta-classifier to determine whether the target model is Trojaned or not.

Results

We achieve the best detection results on a variety of tasks:

- We tried some hand-crafted pattern which is not modelled by our Trojan distribution, and show that our model can still detect these Trojans.

Our contribution
- We propose Meta Neural Trojan Detection (MNTD), a general framework to detect Trojaned models.
- We show that MNTD achieves state-of-the-art detection performance and efficiency against various Trojan attacks.
- We consider the adaptive attack against MNTD and propose a robust algorithm as countermeasure.

Detection Setting
- Attacker: train a Trojaned ML model and share it with others.
 - Full access to training data.
 - Full access to training process.
- Defender: given a model, determine whether it is Trojaned or not.
 - No knowledge of the attack approach.
 - No access to training data.
 - Black-box access to the model.
 - A small set of clean data.

Defense against Adaptive Attack
- We find that adaptive attackers, who know our model and algorithm, can designed tailored attack and evade the detection with >99% probability.
- We propose a robust version of MNTD which incorporates randomness in our algorithm and achieves some robustness against adaptive attacks.