

CryptGPU: Fast Privacy-Preserving Machine Learning on the GPU

Sijun Tan st8eu@virginia.edu

Privacy-Preserving ML

- Hospitals should not learn patient's medical data
- Patient should not learn the weights of the ML model

Can be achieved with **secure multiparty computation**

Scalability Challenge in PPML

- There is a significant performance gap between plaintext and private ML (2300x in private inference, 42000x in private training)
- Linear layers are the major performance bottleneck
- GPU acceleration is necessary for scalability

- Supports private inference/training in the **3PC semi-honest setting** • Keep all computations on the GPU
- Significantly improve performance of private inference/training

Embedding fixed-point arithmetic into floating-point CUDA kernels

GPU friendly protocol design

Replicated secret-sharing as basic building blocks

	CA					
	Plai					
20						

	LeNet (MNIST)		AlexNet (CIFAR-10)		VGG-16 (CIFAR-10)		AlexNet (TI)		VGG-16 (TI)	
	Time	Comm.	Time	Comm.	Time	Comm.	Time	Comm.	Time	Comm.
FALCON*	14.90	0.346	62.37	0.621	360.83*	1.78 [†]	415.67	2.35	359.60‡	1.78‡
CRYPTGPU	2.21	1.14	2.91	1.37	12.14 [†]	7.55 [†]	11.30	6.98	13.89 [‡]	7.59 [‡]
Plaintext	0.0025		0.0049		0.0089	:	0.0099	:	0.0086	() <u> </u>

Brian Knott University of Virginia Facebook AI Research brianknott@fb.com

Yuan Tian University of Virginia yuant@virginia.edu

David J. Wu University of Virginia dwu4@virginia.edu

Our System and Benchmarks

A system that supports end-to-end private training/inference on GPU

 $(A_1 + A_2) \cdot (B_1 + B_2) = A_1B_1 + A_1B_2 + A_2B_1 + A_2B_2$

• Convert product of 64-bit integers into sums of product of 16-bit integers • Use CUDA kernels to compute product of 16-bit integers in floating-point

• Component-wise operations (e.g multiplication) are fast on GPUs • Conditional statements are slow on GPUs • Design protocols that better utilize parallelism

• A type of additive secret-sharing scheme • Each party holds 2-out-of-3 secret shares • Communication efficient in the 3PC setting

	ResNet-50 (ImageNet)		ResNet-	101 (ImageNet)	ResNet-152 (ImageNet)		
	Time	Comm. (GB)	Time	Comm. (GB)	Time	Comm. (GB)	
CRYPTFLOW	25.9	6.9	40*	10.5*	60*	14.5*	
CRYPTGPU	9.31	3.08	17.62	4.64	25.77	6.56	
Plaintext	0.011		0.021		0.031	-	

A 2.5x improvement over CrypTFlow on private inference

A 7x-36x improvement over Falcon on private training

facebook AI Research

Threat Model

3PC semi-honest security with honest-majority

- Honest-majority: Allowing a single semi-honest party for corruption
- Semi-honest: Corrupt parties follow the protocol, but try to gather information out of the protocol

Summary and Future Work

Summary

- We present the first PPML system that keep all computations on the GPU
- We demonstrate that GPU can significantly accelerate bottleneck in linear layers
- Training AlexNet on TinyImageNet previously takes over a year, and now it takes roughly over a week (~10 days)

Future Work

- Support multiple GPUs
- Design more efficient MPC protocols that leverages GPU parallelism