ConDySTA: Context-Aware Dynamic Supplement to

Static Taint Analysis

Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Jianwei Niu
The University of Texas at San Antonio

Approach

False negative

Static taint analyses are widely-applied techniques to detect taint Despite the theoretical soundness of static taint analyses, various ot User prorie MatCh\ DySTA Output
flows in software systems. Although they are theoretically practical complexities often lead to false negatives in real-world < -/ ClowDroid Additional
conservative and designed to detect all possible taint flows, static scenarios. As an example, our evaluation shows that while APP 'y Taint Flows
taint analyses almost always exhibit false negatives due to a variety FlowDroid, the state-of-the-art static taint analysis tool for Android i Log v Y

of implementation limitations. Dynamic programming language apps, finds 281 taint flows in 100 top Android apps but misses at ——rebuild _| Instrumented [instal Strr=va Intermediate

features, inaccessible code, and the usage of multiple programming least 19 taint flows which are confirmed by dynamic taint analysis. stme”t/ > 20D GUlTeD—> ring Value Cources

languages in a software project are some of the major causes. To Earlier studies also show the existence of false negatives in static Stack Trace

alleviate this problem, we developed a novel approach, DySTA, taint analyses. A later study performed an evaluation of six state-of- | ConDySTA Output
which uses dynamic taint analysis results as additional sources for the-art static taint analysis tools for Android and also reported many «— EEOE Context Injection S Additional
static taint analysis. However, naively adding sources causes static common false negatives not detected by any of the evaluated tools. Stack trace atic calling <ow ro>—> Taint Elows
analysis to lose context sensitivity and thus produce false positives. Such false negatives may result in undetected vulnerabilities, privacy context

Thus, we developed a hybrid context matching algorithm and a
corresponding tool, ConDySTA, to preserve context sensitivity in
DySTA. We applied REPRODROID, a comprehensive
benchmarking framework for Android analysis tools, to evaluate
ConDySTA. The results show that across 28 apps (1) ConDySTA
was able to detect 12 out of 28 taint flows which were not detected
by any of the six state-of-the-art static taint analyses considered in
REPRODROID, and (2) ConDySTA reported no false positives,
whereas nine were reported by DySTA alone. We further applied
ConDySTA and FLOWDROID to 100 top Android apps from Google
Play, and ConDySTA was able to detect 39 additional taint flows
(besides 281 taint flows found by FLOWDROID) while preserving

leaks, malicious apps, etc. The reason behind these false negatives
can often be attributed to dynamic programming language features
such as reflection calls in Java, dynamically loaded or generated
code, external code execution through database servers and network
servers, and multi-language code (e.g., native code and shell
scripts). We refer to such features as blockers as they block the static
taint analyses from tracing taint flows.

We propose an approach that uses the results of dynamic taint analysis as additional sources to supplement static taint analysis as a
means to reduce false negatives. The base version of our approach is referred as DySTA (Dynamic Supplement of static Taint Analysis).
DySTA first runs static taint analysis and dynamic taint analysis with the same set of initial sources, respectively. Once DySTA observes a
variable holding a tainted value in the dynamic taint analysis that is not observed as tainted by the static taint analysis, the variable will be
considered a new source (referred to as an intermediate source to be differentiated from the original sources). For the set of all intermediate
sources, DySTA runs the static taint analysis again to find additional taint flows. Unlike static analysis, dynamic analysis is performed at run
time, so it is less affected by blockers and is able to trace taint flows through dynamically loaded or generated code. However, the basic
design of DySTA has an important limitation. Since it simply concatenates static and dynamic taint flows without any constraints, the context
sensitivity of the original static taint analysis will be lost. Therefore DySTA alone will lead to additional false positives besides those in the
original static taint analysis for cases where blockers were analyzed. To overcome this, we further propose hybrid context matching in which
the context of dynamic taint flows is injected into the intermediate sources. DySTA is then augmented so the subsequent static taint analysis
considers only taint flows that matching the injected context. By incorporating context matching, we implemented ConDySTA (Context-
aware DySTA) as an extension of FlowDroid, a state-of-the-art static taint analysis tool for Android apps.

Third-party services

the context sensitivity of FLOWDROID. @
Source

Dynamic code loading

Y
'@

Taint Anlalysis

- - - - ID Feature Apk Source & Sink
Taint analysis can detect taint flows in software programs and has DB e
been widely used in privacy leak detection. Static taint analyses 124 | ImplicitFlows | ImplicitFlowl ancroid.telephony. Te'ephony Manager.get Devicelol)
_ _ _ _ talnt ﬂOWS android.util. og.i(java.lang.String,java.lang. .rlng)
propagate taints based on an overestimation of all possible program B 191 | Native SinkInNativeLibCode android telephony. TelephonyManager.getDeviceld()
_ _ _ _ _ mod.ndk.ActMain.cFuncSendData(java.lang.String)
paths leading to the detection of all possible taint flows with no false R _ 165 | Nalive SourcelnNativeCode mod.ndk.ActMain cFuncGetIMEI(android.content.Context)
. .]] eprODrO|d android.telephony.SmsManager.send TextMessage(java.lang.String, ...)
negatives but some false positives due to infeasible paths. 208 | SReEETuE, TGE] || Gy audroicehony. TohephonyMumagorgetovicdldl))
- - = android.telephony.SmsManager.send Text Message(java.lang.String, ...
: java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object]|]
l|public class LeakageApp extends Activityd{ Contribution 206 | Reflection_ICC | OnlyTelephony o slephony SmeManages s ToaMomse ez S)
2|private User user = null; . . java.lang.reflect. Method.invoke(java.lang.Object,java.lang.Object|])
3 protected void onRestart O A 207 | Refiection ICC OnlyTelephony Dynamic android.telephony.SmsManager.sendTextMessage(java.lang.String_., w5)
4 EditText Text = . . . =gn . ; java.lang.reflect. Method.invoke(java.lang.Object,java.lang.Object|])
p ex userr.xame. e ; ¢ We demOnStrate that dynam|C talnt anaIyS|S reSUItS can be Used False POSItlve' 208 1 Reflection. 1CC OnlyTelephony . Reverse android.telephony.SmsManager. sendTextMessage(java.lang.String, ...)
(EditText)findViewById(R.id.username) ; : : . = .
. Source. - D STA 9 209 | Reflection ICC OnlvTeleoh Substri java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object][])
5|| EditText passwordText = ' as a supplement to static taint analysis to reduce false negatives yS A it nlyTelephony Substring | droid.telephony.SmsManager.send TextMessage(java.Jang.String,)
(EditText)findViewById(R.id.pwdString) ; Read Password : ti = ConDVSTA: O ICCBench
6 String uname = usernameText.toString() ; In practice. y] ot | TeeTsrsstiiEding | 6 dvirelstsrl android.telephony. TelephonyManager.get Deviceld()
7 Strin g G : ; & g —aynreg android.util.Log.d(java.lang.String,java.lang.String)
& PV passwondiexsistoString android.telephony. TelephonyManager.get Deviceld()
g if (}'1 uname . isEmpty <zj & : ' pud . isEmgt):y O) We developed a novel approach, ConDySTA, to preserve the 25 | IccTargetFinding | icc_dynregister? Sndroid util Lo A (ave ansStrine ave fang String)
this.user = new User (uname, pw ; i\ /1 " " " 4 . .. android.telephony.TelephonyManager.get Deviceld()
ol3 context sensitivity of static taint analysis when supplemented by 27 | IccTargetFinding | icc_explicitl O s o e
11///Callback method in xml file dynamic taint analysis. 32 | IecTargetFinding | icc_implicit_mixl N Eo IR S iory: = SpUOTy HlanRge ek Deviee 20
. : : . — - android.util. Log.d(java.lang.String,java.lang.String)
12| public void sendMessage(View view)({

Static taint analysis

13 if (user == null) return; o ' : ' .
|l oo el aeie oA / We performed evaluations using the ReproDroid benchmark —_ . pem—. s i O ——
p gelp) ‘ » =‘ . . App Package Name KLOC FlowDroid | DySTA D g DySTA+ FlowDroid
15| String pwdString = pwd.getPassword(); and 100 top Android apps from Google Play demonstrating that taint flows () (Dynamic) | &0 husTA aw Dol
16 Stri bfPwd = ""; - . e . A :
17 /t/:;iISI% zracz primitives: SOurce Slnk COnDySTA can reduce many false negatlves reported by State-Of- @ from 12 apps 222'Zgzii?gér:iigsdndmld.bhoppmg 1332; i ?? 1?%23 4222 1?2;
ig I -suin%}tocharuraym the-art taint analysis tools and largely reduce false positives from comdisney- WNWLite 1489 § I 3% 357 131
bfPud += 0 Stri t. . . com.forthblue.poo :)
20 ° v ¢ rase CORLE our basellne SOIUt'On com.gameloft.android. ANMP. 9540 20 3 3(0) 29 18
Gloft DMHM
21 String message = "User: " + o mxtech videoolaver & .
22 user.getName() + " | Pwd: " + obfPwd; 100 Real-world apps com:pinterc};t feoplayera: :g;j g ; igi; 5;: 1§;
25 SmsManager sms = SmsManager.getDefault(); com.sgiggle.production 6015 0 1 1(0) 44 32
24 sms .sendTextMessage (" +44 020 7321 0905", Sink: com.tubitv 7660 0 5 3(2) 38 273
2| “3i, sessages aadt, i), ink | o w— N ——— F—
26| J Send password via SMS gzalnrszjzyl.nz;nl‘;)ee;).);ixel.art.coloring. 4795 0 14 1§0§ 93 64
drawing.puzzle
Total N/A 281 1068 39(19) N/A

