
ConDySTA: Context-Aware Dynamic Supplement to 
Static Taint Analysis

False negative

Contribution

Taint Anlalysis

Abstract

Static taint analyses are widely-applied techniques to detect taint
flows in software systems. Although they are theoretically
conservative and designed to detect all possible taint flows, static
taint analyses almost always exhibit false negatives due to a variety
of implementation limitations. Dynamic programming language
features, inaccessible code, and the usage of multiple programming
languages in a software project are some of the major causes. To
alleviate this problem, we developed a novel approach, DySTA,
which uses dynamic taint analysis results as additional sources for
static taint analysis. However, naïvely adding sources causes static
analysis to lose context sensitivity and thus produce false positives.
Thus, we developed a hybrid context matching algorithm and a
corresponding tool, ConDySTA, to preserve context sensitivity in
DySTA. We applied REPRODROID, a comprehensive
benchmarking framework for Android analysis tools, to evaluate
ConDySTA. The results show that across 28 apps (1) ConDySTA
was able to detect 12 out of 28 taint flows which were not detected
by any of the six state-of-the-art static taint analyses considered in
REPRODROID, and (2) ConDySTA reported no false positives,
whereas nine were reported by DySTA alone. We further applied
ConDySTA and FLOWDROID to 100 top Android apps from Google
Play, and ConDySTA was able to detect 39 additional taint flows
(besides 281 taint flows found by FLOWDROID) while preserving
the context sensitivity of FLOWDROID.

Taint analysis can detect taint flows in software programs and has
been widely used in privacy leak detection. Static taint analyses
propagate taints based on an overestimation of all possible program
paths leading to the detection of all possible taint flows with no false
negatives but some false positives due to infeasible paths.

• We demonstrate that dynamic taint analysis results can be used
as a supplement to static taint analysis to reduce false negatives
in practice.

• We developed a novel approach, ConDySTA, to preserve the
context sensitivity of static taint analysis when supplemented by
dynamic taint analysis.

• We performed evaluations using the ReproDroid benchmark
and 100 top Android apps from Google Play demonstrating that
ConDySTA can reduce many false negatives reported by state-of-
the-art taint analysis tools and largely reduce false positives from
our baseline solution

Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Jianwei Niu
The University of Texas at San Antonio

Source: 
Read Password

Sink:
Send password via SMS

Static taint analysis

Source Sink

X

Third-party services

Dynamic code loading
…

Despite the theoretical soundness of static taint analyses, various 
practical complexities often lead to false negatives in real-world 
scenarios. As an example, our evaluation shows that while 
FlowDroid, the state-of-the-art static taint analysis tool for Android 
apps, finds 281 taint flows in 100 top Android apps but misses at 
least 19 taint flows which are confirmed by dynamic taint analysis. 
Earlier studies also show the existence of false negatives in static 
taint analyses. A later study performed an evaluation of six state-of-
the-art static taint analysis tools for Android and also reported many 
common false negatives not detected by any of the evaluated tools. 
Such false negatives may result in undetected vulnerabilities, privacy 
leaks, malicious apps, etc. The reason behind these false negatives 
can often be attributed to dynamic programming language features 
such as reflection calls in Java, dynamically loaded or generated 
code, external code execution through database servers and network 
servers, and multi-language code (e.g., native code and shell 
scripts). We refer to such features as blockers as they block the static 
taint analyses from tracing taint flows.

Source Sink

Approach

Evaluation

installrebuildInstrument GUI TestInstrumented 
app

Intermediate 
Sources

Additional 
Taint FlowsFlowDroid

Predefined User Profile
DySTA Output

APP

String Value

Stack Trace

FlowDroid

ConDySTA Output

Log

Additional 
Taint Flows

Context Injection

Match

Stack trace Static calling 
context

We propose an approach that uses the results of dynamic taint analysis as additional sources to supplement static taint analysis as a
means to reduce false negatives. The base version of our approach is referred as DySTA (Dynamic Supplement of static Taint Analysis).
DySTA first runs static taint analysis and dynamic taint analysis with the same set of initial sources, respectively. Once DySTA observes a
variable holding a tainted value in the dynamic taint analysis that is not observed as tainted by the static taint analysis, the variable will be
considered a new source (referred to as an intermediate source to be differentiated from the original sources). For the set of all intermediate
sources, DySTA runs the static taint analysis again to find additional taint flows. Unlike static analysis, dynamic analysis is performed at run
time, so it is less affected by blockers and is able to trace taint flows through dynamically loaded or generated code. However, the basic
design of DySTA has an important limitation. Since it simply concatenates static and dynamic taint flows without any constraints, the context
sensitivity of the original static taint analysis will be lost. Therefore DySTA alone will lead to additional false positives besides those in the
original static taint analysis for cases where blockers were analyzed. To overcome this, we further propose hybrid context matching in which
the context of dynamic taint flows is injected into the intermediate sources. DySTA is then augmented so the subsequent static taint analysis
considers only taint flows that matching the injected context. By incorporating context matching, we implemented ConDySTA (Context-
aware DySTA) as an extension of FlowDroid, a state-of-the-art static taint analysis tool for Android apps.

ReproDroid

12 taint flows 

§ DySTA: 9
§ ConDySTA: 0

False Positive:

100 Real-world apps

taint flows 
from 12 apps39


