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Static taint analyses are widely-applied techniques to detect taint Despite the theoretical soundness of static taint analyses, various ot User prorie MatCh\ DySTA Output
flows in software systems. Although they are theoretically practical complexities often lead to false negatives in real-world < -/ ClowDroid Additional
conservative and designed to detect all possible taint flows, static scenarios. As an example, our evaluation shows that while APP 'y Taint Flows
taint analyses almost always exhibit false negatives due to a variety FlowDroid, the state-of-the-art static taint analysis tool for Android i Log v Y
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languages in a software project are some of the major causes. To Earlier studies also show the existence of false negatives in static Stack Trace

alleviate this problem, we developed a novel approach, DySTA, taint analyses. A later study performed an evaluation of six state-of- | ConDySTA Output
which uses dynamic taint analysis results as additional sources for the-art static taint analysis tools for Android and also reported many «— EEOE Context Injection S Additional
static taint analysis. However, naively adding sources causes static common false negatives not detected by any of the evaluated tools. Stack trace atic calling <ow ro>—> Taint Elows
analysis to lose context sensitivity and thus produce false positives. Such false negatives may result in undetected vulnerabilities, privacy context

Thus, we developed a hybrid context matching algorithm and a
corresponding tool, ConDySTA, to preserve context sensitivity in
DySTA. We applied REPRODROID, a comprehensive
benchmarking framework for Android analysis tools, to evaluate
ConDySTA. The results show that across 28 apps (1) ConDySTA
was able to detect 12 out of 28 taint flows which were not detected
by any of the six state-of-the-art static taint analyses considered in
REPRODROID, and (2) ConDySTA reported no false positives,
whereas nine were reported by DySTA alone. We further applied
ConDySTA and FLOWDROID to 100 top Android apps from Google
Play, and ConDySTA was able to detect 39 additional taint flows
(besides 281 taint flows found by FLOWDROID) while preserving

leaks, malicious apps, etc. The reason behind these false negatives
can often be attributed to dynamic programming language features
such as reflection calls in Java, dynamically loaded or generated
code, external code execution through database servers and network
servers, and multi-language code (e.g., native code and shell
scripts). We refer to such features as blockers as they block the static
taint analyses from tracing taint flows.

We propose an approach that uses the results of dynamic taint analysis as additional sources to supplement static taint analysis as a
means to reduce false negatives. The base version of our approach is referred as DySTA (Dynamic Supplement of static Taint Analysis).
DySTA first runs static taint analysis and dynamic taint analysis with the same set of initial sources, respectively. Once DySTA observes a
variable holding a tainted value in the dynamic taint analysis that is not observed as tainted by the static taint analysis, the variable will be
considered a new source (referred to as an intermediate source to be differentiated from the original sources). For the set of all intermediate
sources, DySTA runs the static taint analysis again to find additional taint flows. Unlike static analysis, dynamic analysis is performed at run
time, so it is less affected by blockers and is able to trace taint flows through dynamically loaded or generated code. However, the basic
design of DySTA has an important limitation. Since it simply concatenates static and dynamic taint flows without any constraints, the context
sensitivity of the original static taint analysis will be lost. Therefore DySTA alone will lead to additional false positives besides those in the
original static taint analysis for cases where blockers were analyzed. To overcome this, we further propose hybrid context matching in which
the context of dynamic taint flows is injected into the intermediate sources. DySTA is then augmented so the subsequent static taint analysis
considers only taint flows that matching the injected context. By incorporating context matching, we implemented ConDySTA (Context-
aware DySTA) as an extension of FlowDroid, a state-of-the-art static taint analysis tool for Android apps.
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