Reliable control of peripheral clock

Targeting and shutting down a victim

1. Remote (software-based attack)
2. Stealthy (against modern defenses)
3. Reliable (practical in real scenario)

CANnon: Stealthy Remote Shutdown Attacks via Automotive MCUs

Sekar Kulandaivel, Automotive Security PhD Candidate

Background

- **ECU**
 - Application Layer
 - SW App.
 - Data Link Layer
 - CAN HW
 - Physical Layer
 - CAN Bus

CANnon Design

- **Reliable control of peripheral clock**
 - A B C C C A B
 - Actual attacker output
 - Timer ISR
 - Interrupts every CAN bit time
 - ISR will either:
 - A. Enable clock
 - B. Disable clock
 - C. Do nothing

CANnon: Stealthy Remote Shutdown Attacks via Automotive MCUs

Sekar Kulandaivel, Automotive Security PhD Candidate

Motivation

Against evolving threat landscape

- Message authentication
- Intrusion detection systems
- Secure hardware solutions

Limitation of current attacks

Existing attacks cannot simultaneously be:

1. Remote (software-based attack)
2. Stealthy (against modern defenses)
3. Reliable (practical in real scenario)

Attack Insight

Modern ECU design with peripherals

- Oscillator
- Clock
- Power
- SW App.
- CAN Hardware
- CAN Peripheral
- CAN Transceiver
- CAN TX
- CAN RX

Clock control is now possible

Remote adversary disables clock

- Logical attack output
 - 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0
 - Dominant state held
- Actual attack output
 - 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0

Key Results

CANnon attack alternatives

- Firing with SOF bit
- Firing with ACKs

Practical challenges

- Period deviation in victim frames
 - Guarantee victim frame time by forcing ordered queuing of frames
- Interruptions by higher-priority frames
 - Use CANvases network mapper to identify highest-priority frame

Attacks on two real vehicles

- Powertrain ECU of ‘17 Ford Focus
 - Shutdown in 2ms but auto-recover
- Power steering ECU of ‘09 Toyota Prius
 - Permanent shutdown in 700ms

Countermeasures

Prevention

- Forced clear of transmit buffers
- Removal of clock gating for CAN

Detection

- Detecting bit-wise voltage spikes
- On-chip power analysis