The Remote on the Local
Exacerbating Web Attacks Via Service Workers Caches

Marco Squarcina (TU Wien)
@blueminimal
15th IEEE Workshop on Offensive Technologies. May 27, 2021

Joint work with
Stefano Calzavara (Università Ca' Foscari Venezia & OWASP)
Matteo Maffei (TU Wien)
Service Workers

- Key enabler of PWAs
- Client-side web application proxies able to intercept HTTP requests
- Cache API allows to store HTTP responses, offline capabilities
- SW execute in a separate context, no direct DOM access
- Operate based on origin and path, event-based activation
Cache-First/Offline-first Pattern

```
self.addEventListener('fetch', (e) => {
  e.respondWith(
    caches.match(e.request).then((r) => {
      return r ||
      fetch(e.request).then((res) => {
        return caches.open('static').then((cache) => {
          cache.put(e.request, res.clone());
          return res;
        });
    });
});
```

The Remote on the Local: Exacerbating Web Attacks Via Service Workers Caches
Secret Exfiltration

- SW Cache can be accessed also from scripts running in the page.
- Web attacker with XSS on a page can leak cached secrets bound to the entire origin!
- This includes secrets left over from a previous session like
 - personally identifiable information
 - passwords
 - security tokens
 - multimedia content
Content Corruption

- Cache entries can also be arbitrarily **modified** and **forged**
- An attacker can modify a response to
 - Inject malicious JS (e.g. keylogger) (by editing a cached JS file or by injecting a script in a page)
 - Tamper HTTP response headers
- Similar to **persistent client-side XSS**
 - Reflected XSS \rightarrow **persistent** attack
 - Denial of Service (DoS)
 - Amplification of the attack surface
PITM on HTTP responses

- **Inspect and modify response** objects, including **HTTP headers**
- Not possible with a traditional XSS, more similar to HTTP **response splitting attack**

- **Framing**
 - Disable CSP `frame-ancestors` and `X-Frame-Options`

- **Privilege Escalation**
 - Disable Feature Permission Policy to access webcam, microphone, geolocation, etc.

- **Break Isolation**
 - Avoid SOP enforcement by removing CSP `sandbox` directive and iframe attribute

- **Bypass Defensive Programming**
 - Void the robustness of JS code (Constants, Frozen Objects, Sealed Objects, ...)
Data Collection

- **Runtime monitoring** of Cache API calls from **SWs** and **pages**
- Monitor injected by mitmproxy in SW code and by puppeteer in the pages
- Inspect home page and search engines for links to visit (<50 per origin)
Large Scale Assessment

- Crawled Tranco top 150K sites, visited >4M pages (June ‘20)
 - 6,709 sites use Service Workers (4.6%)
 - 3,436 sites use Service Workers + Cache API (51.2%)
 - Broken or missing CSP in 95.8% of sites using SW + Cache API
 (Potentially vulnerable to our attack if a XSS is found in a page of the site)

- Automated vulnerability testing
 - 2,769 (65%) sites blindly execute a JS payload we added to cached content (HTML or scripts)
 - 2,040 sites cache HTML (38% executes)
 - 2,148 sites cache JS (75% executes)
Countermeasure

Straightforward solution

- **Restrict Cache API to SW**
- Compatibility issues with existing sites:
 - ~6% of the sites using the Cache API, access the cache from a script
 - Identified legitimate patterns

Compatible solution

- **Restrict Cache API to SW by default**
- **Custom header** or integration with **DocumentPolicy** to relax the protection
Conclusion

- **Powerful attack** against **Service Workers** on the design of the **Cache API**
- **PITM-like capabilities** that couldn't be achieved by a persistent client-side XSS
- **Strong, but realistic, threat model**
 - XSS still widespread (35.6% of the Google Vulnerability Reward Program payout in 2018 ~ 1.2M $)*
 - CSP often misconfigured (~95%)
 - Large scale assessment (150K sites) + successful **automated testing** (65%)
- Proposed a **backward-compatible redesign** of the **Cache API** that would have an **immediate security benefit** for the large majority of websites

Demos, PoCs, Extension, Paper

https://swcacheattack.secpriv.wien/
Thank you!

https://swcacheattack.secpriv.wien/

Marco Squarcina (TU Wien)

marco.squarcina@tuwien.ac.at
@blueminimal