
Identifying Valuable Pointers
In Heap Data

James Roney, Troy Appel, Prateek Pinisetti, James Mickens

Overview
• Data-oriented attacks manipulate programs while respecting control flow integrity

• Memory cartography is a powerful data-oriented attack
• An attacker builds a map of pointers between memory regions (e.g., stack, heap, static data)

• A memory read vulnerability in one region allows the attacker to navigate between regions and
read data from the entire address space....

• … assuming that pointers reside constant offsets within regions!

• Stack and heap regions often have nondeterministic pointer offsets

• We show that an attacker with a memory read vulnerability can identify pointers using
a signature-matching algorithm, even in nondeterministic regions

Outline

• Data-Oriented Attacks

• Memory Cartography

• Finding Pointers on The Heap

• Experiments

• Conclusion

Outline

• Data-Oriented Attacks

• Memory Cartography

• Finding Pointers on The Heap

• Experiments

• Conclusion

Data-Oriented Attacks
• Historically, attackers used memory bugs to subvert control flows

Data-Oriented Attacks
• However, modern mitigations make this more difficult

CFG Violation can be
detected/prevented
by ASLR, stack
canaries, DEP,
shadow stacks, etc.

Data-Oriented Attacks
• Data-oriented exploits avoid modifying control data, respecting the CFG

Outline

• Data-Oriented Attacks

• Memory Cartography

• Finding Pointers on The Heap

• Experiments

• Conclusion

Memory Cartography
• Data-Oriented exploit introduced by Rogowski et al. (2018)

• Attacker has a local read vulnerability

• Wants to read from the entire address space without triggering a
segmentation fault

• Difficult due to fragmented nature of memory allocations

• Assumptions:
• ASLR, DEP, stack canaries, etc. are enabled

• Attacker can run victim binary locally

Memory Cartography
• Web Browser Example

Read Vulnerability Here

Want to read Cookies here

Memory Cartography
• Attacker runs binary locally, scans

static data sections for inter-region
pointers

• Records pointers in form
(<src_name, src_offset>,
<dst_name, dst_offset>)

• ASLR preserves relative offsets, so
these tuples will be consistent
across program runs when src and dst
are static data regions

Memory Cartography
• Some of these pointers may simply be

pointer-sized regions that happen to
reference external memory regions

• To filter out “false pointers,” the attacker
repeats the procedure for multiple
independent program loads, and looks
for pointers that are consistently present

Memory Cartography

?

• Process results in the ability to navigate
across data sections and reach target heap

• Still need a way of jumping from
JS heap to a data section. Offsets of pointers
in JS heap may not be consistent!

Memory Cartography

?

• Rogowski et al. accomplished this with
a heap spray of easily-recognizable objects
containing known data section pointers

• However, this approach may not be viable
for all applications

Outline

• Data-Oriented Attacks

• Memory Cartography

• Finding Pointers on The Heap

• Experiments

• Conclusion

Finding Pointers on the Heap
• Like in original cartography setup, attacker has a local heap read

vulnerability, wants to read from the entire address space without
triggering a fault

• However, the attacker has no influence over contents of the heap. So
to find a pointer to another region, the attacker must scan the heap
at attack-time and recognize the pointer somehow

• Assumptions:
• ASLR, DEP, stack canaries, shadow stacks, etc. are enabled

• Attacker can run the program locally

Finding Pointers on the Heap
• High-level idea:

• Run the program locally several times, and identify recurring pointers to
specific offsets within data sections

• Use the bytes surrounding those frequent pointers to build an identifiable
“signature”

• At attack-time, scan the heap using a local read vulnerability and match bytes
to the signature from offline analysis

• If the bytes surrounding an aligned, pointer-sized region match the signature,
follow the pointer-sized region to a known offset within a data section

• From there, perform further memory cartography as normal

Finding Pointers on the Heap
• Attacker runs the program locally and determines the boundaries of

allocated regions (by looking at /proc/<pid>/maps, for example)

• Note that the “heap” can actually comprise multiple VMAs (as when
the program uses an mmap-based allocator)

Finding Pointers on the Heap
• Attacker then scans the heap, looking for pointers to other regions,

and identifies the most frequent pointer destinations
• “Most frequent” meaning the (dst_name, dst_offset) pairs that were

observed the most times across multiple program runs

Finding Pointers on the Heap
• Attacker examines the bytes surrounding pointers to frequent

destinations

Finding Pointers on the Heap
• Attacker uses bytes surrounding pointers to build a filter

• Filter is simply a sequence of lower bounds and upper bounds on
each byte in a fixed-width window surrounding the pointer. Filter
bounds are determined by taking the highest and lowest byte value
observed in each position during local program runs

Finding Pointers on the Heap
• Finally, filter bounds are used to identify a pointer to a known

destination during an attack-time memory scan

Finding Pointers on the Heap
• Finally, filter bounds are used to identify a pointer to a known

destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Finding Pointers on the Heap
• Finally, filter bounds are used to identify a pointer to a known

destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Finding Pointers on the Heap
• Finally, filter bounds are used to identify a pointer to a known

destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Finding Pointers on the Heap
• Finally, filter bounds are used to identify a pointer to a known

destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Outline

• Data-Oriented Attacks

• Memory Cartography

• Finding Pointers on The Heap

• Experiments

• Conclusion

Methodology
• General setup: run the program 10 times, dumping memory each

time
• Each run is a fresh ASLR load

• Use the first nine program runs to compute filters as described
previously
• Create and evaluate pointers for the four most frequent pointer destinations

observed across all runs

• Use the holdout run to test the accuracy of the filter in identifying the
pointer of interest
• We hold out each run one-by-one and average the results (10-fold cross

validation)

Methodology
• To test the performance of a filter, we simply ran it over all aligned

pointer-sized regions in the dumped heap from a held-out run
• Future work should demonstrate an end-to-end attack with a real read

vulnerability. We assumed the presence of such a vulnerability and simulated
it by dumping the heap

• Filter performance metrics:

Experiments: Vim
• Simple single-threaded test program with a single, well-defined heap

region

Experiments: Firefox
• Wanted to simulate vulnerability in JS engine heap

• Unlike Vim, Firefox JS engine uses an mmap-based allocator
(jemalloc), so the heap is spread over multiple VMAs

• Identified jemalloc heap “chunks” by size, treated the aggregate
contents of these regions as the effective program heap

Experiments: Firefox
• Indicates the worst-case performance if attacker were limited to

reading from a single randomly-chosen heap chunk

Experiments: Apache
• Used OpenSSL 1.0.1, which is vulnerable to HeartBleed

• Identified pointers in heap region containing the vulnerable
HeartBleed buffer

• Served a WordPress site with simulated traffic

Experiments: Take-home Point
• In all tested programs, we were able to identify pointers to static data

sections with very high precision

• We were able to reliably reach static data sections with high
connectivity to the rest of the address space, making them ideal
starting points for memory cartography attacks

• This means powerful memory cartography attacks are possible even
when the attacker has no control of the heap layout

Outline

• Data-Oriented Attacks

• Memory Cartography

• Finding Pointers on The Heap

• Experiments

• Conclusion

Conclusions
• A simple signature-matching algorithm facilitates powerful memory

cartography attacks, even when the attacker does not have control
over heap contents

• Some caveats:
• As in original memory cartography paper, assumes that inter-region pointers

are located at the same offsets on the local machine and the victim machine

• Time/bandwidth constraints imposed by real-world exploits may limit the
attacker’s ability to scan the entire heap

