l[dentifying Valuable Pointers
In Heap Data

James Roney, Troy Appel, Prateek Pinisetti, James Mickens

13 e

HARVARD
UNIVERSITY

Overview

* Data-oriented attacks manipulate programs while respecting control flow integrity

 Memory cartography is a powerful data-oriented attack
e An attacker builds a map of pointers between memory regions (e.g., stack, heap, static data)

A memory read vulnerability in one region allows the attacker to navigate between regions and
read data from the entire address space....

* ...assuming that pointers reside constant offsets within regions!
e Stack and heap regions often have nondeterministic pointer offsets

* We show that an attacker with a memory read vulnerability can identify pointers using
a signature-matching algorithm, even in nondeterministic regions

N N

Heap 1 Static Data 1 Static Data 2 Heap 2

S

Outline

* Data-Oriented Attacks

* Memory Cartography

* Finding Pointers on The Heap
* Experiments

* Conclusion

Outline

e Data-Oriented Attacks

Data-Oriented Attacks

 Historically, attackers used memory bugs to subvert control flows

X = do_authentication(user); X = do_authentication(user);
int authenticated = 0; int authenticated = 0;
char password[128]; char password[128];
read_packet(password); read_packet(password);
if(auth_pw(user, password){...} if(auth_pw(user, password){...}

authenticated = 1; authenticated = 1;

\J / Y /
return authenticated,; return authenticated,;

Y / \/ / \
execve("/bin/sh")

Data-Oriented Attacks

* However, modern mitigations make this more difficult

X = do_authentication(user); X = do_authentication(user);
int authenticated = 0; int authenticated = 0;
char password[128]; char password[128]; CFG Violation can be
read_packet(password); read_packet(password);
if(auth_pw(user, password){...} if(auth_pw(user, password){...} detected/prevented

by ASLR, stack

\ \ canaries, DEP,

shadow stacks, etc.
authenticated = 1; authenticated = 1;

VS .

return authenticated; return authenticated;

L L

execve("/bin/sh")

Data-Oriented Attacks

e Data-oriented exploits avoid modifying control data, respecting the CFG

X = do_authentication(user); X = do_authentication(user);
int authenticated = 0; int authenticated = 0;
char password[128]; char password[128];
read_packet(password); read_packet(password);
if(auth_pw(user, password){...} if(auth_pw(user, password){...}

authenticated = 1; authenticated = 1;

\J / \J /
return authenticated,; return authenticated,;

\ / v Ahenticated -1

Outline

* Memory Cartography

Memory Cartography

e Data-Oriented exploit introduced by Rogowski et al. (2018)
» Attacker has a local read vulnerability

* Wants to read from the entire address space without triggering a
segmentation fault

 Difficult due to fragmented nature of memory allocations

* Assumptions:
* ASLR, DEP, stack canaries, etc. are enabled
e Attacker can run victim binary locally

Memory Cartography

* Web Browser Example

Read Vulnerability Here

v

v

Want to read Cookies here

JS Engine
Static Data

HTML Engine
Static Data

JS Engine Heap

HTML Engine Heap

DOM Renderer Heap

Renderer
Static Data

Renderer Process Address Space

Memory Cartography

e Attacker runs binary locally, scans
static data sections for inter-region
pointers

e Records pointers in form
(<src_name, src_offset>,
<dst name, dst offset>)

* ASLR preserves relative offsets, so
these tuples will be consistent
across program runs when src and dst
are static data regions

\.

JS Engine
| 4128 Static Data
HTML Engine
> +120 Static Data
JS Engine Heap
HTML Engine Heap
— 7

DOM Renderer Heap

Renderer
Static Data

— +72
— +176

+64 —

+32 <«
+96 —.
+168 —

+48 <
+108 <«

J/

Renderer Process Address Space

Memory Cartography

* Some of these pointers may simply be
pointer-sized regions that happen to
reference external memory regions

 To filter out “false pointers,” the attacker
repeats the procedure for multiple
independent program loads, and looks
for pointers that are consistently present

>

e

—

>

— +176

\.

JS Engine
Static Data

HTML Engine
Static Data

JS Engine Heap

HTML Engine Heap

DOM Renderer Heap

Renderer
Static Data

+64 —

+32 <«
+96 —.

g

>

+108 <«

J/

Renderer Process Address Space

Memory Cartography

* Process results in the ability to navigate
across data sections and reach target heap

* Still need a way of jumping from
JS heap to a data section. Offsets of pointers
in JS heap may not be consistent!

s -

— 7

— +176

\.

JS Engine
Static Data

HTML Engine
Static Data

JS Engine Heap

HTML Engine Heap

DOM Renderer Heap

Renderer
Static Data

+64 —

+32 <«
+96 —.

+108 <«

J/

Renderer Process Address Space

)]S I_Engine +64 —

Memory Cartography viatie bate
HTML Engine 12~

Static Data

* Rogowski et al. accomplished this with J5 Engine Heap

a heap spray of easily-recognizable objects

containing known data section pointers HTML Engine Heap
* However, this approach may not be viable
for all applications — ? DOM Renderer Heap
Renderer
Static Data +108 «
— +176
. J

Renderer Process Address Space

Outline

* Finding Pointers on The Heap

Finding Pointers on the Heap

* Like in original cartography setup, attacker has a local heap read
vulnerability, wants to read from the entire address space without
triggering a fault

* However, the attacker has no influence over contents of the heap. So
to find a pointer to another region, the attacker must scan the heap
at attack-time and recognize the pointer somehow

* Assumptions:
* ASLR, DEP, stack canaries, shadow stacks, etc. are enabled
e Attacker can run the program locally

Finding Pointers on the Heap
* High-level idea:

* Run the program locally several times, and identify recurring pointers to
specific offsets within data sections

* Use the bytes surrounding those frequent pointers to build an identifiable
“signature”

e At attack-time, scan the heap using a local read vulnerability and match bytes
to the signature from offline analysis

* |f the bytes surrounding an aligned, pointer-sized region match the signature,
follow the pointer-sized region to a known offset within a data section

* From there, perform further memory cartography as normal

Finding Pointers on the Heap

e Attacker runs the program locally and determines the boundaries of
allocated regions (by looking at /proc/<pid>/maps, for example)

* Note that the “heap” can actually comprise multiple VMAs (as when
the program uses an mmap-based allocator)

Run 1

Run 2

0x04

0x08

0xa0

Oxad

Oxc2

Oxb0

Oxf6

Oxed

Finding Pointers on the Heap

e Attacker then scans the heap, looking for pointers to other regions,
and identifies the most frequent pointer destinations

* “Most frequent” meaning the (dst name, dst offset) pairsthat were
observed the most times across multiple program runs

=

Run 1 0x04 Al A | oxa0 Oxc2 Oxf6

[heap] libc.so

Run 2 ox08 b | | || I/ U Oxed

Finding Pointers on the Heap

* Attacker examines the bytes surrounding pointers to frequent

destinations

Run 1 Run 2

Byte Value
Byte Value
>
Byte Value
Byte Value
7,
2
R0
)

L @ & & L & & . ’
&E @& © ¥ @ © G & © ¥ @ ©
& (@ P o S & @ S & (@

Finding Pointers on the Heap

» Attacker uses bytes surrounding pointers to build a filter

* Filter is simply a sequence of lower bounds and upper bounds on
each byte in a fixed-width window surrounding the pointer. Filter
bounds are determined by taking the highest and lowest byte value

observed in each position during local program runs

Run 1 Run 2

Byte Value
+
Byte Value
+
Byte Value
+
Byte Value

Finding Pointers on the Heap

* Finally, filter bounds are used to identify a pointer to a known
destination during an attack-time memory scan

Run 1 Run 2
g g S g
o + @ + + 2
> > > >
m o) m m
O S © o) S © O © & .
N N 9@ N N 9 N N 9 N
ec’@b@ L 2 P o 8’* 2 & .o 8’* 2 5
¢ & L & ¢ & ¢ Q& @

. Filter Bounds

Finding Pointers on the Heap

* Finally, filter bounds are used to identify a pointer to a known
destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Finding Pointers on the Heap

* Finally, filter bounds are used to identify a pointer to a known
destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Finding Pointers on the Heap

* Finally, filter bounds are used to identify a pointer to a known
destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Finding Pointers on the Heap

* Finally, filter bounds are used to identify a pointer to a known
destination during an attack-time memory scan

Filter Bounds Leaked Heap Data

Outline

* Experiments

Methodology

* General setup: run the program 10 times, dumping memory each
time
e Each runis a fresh ASLR load
e Use the first nine program runs to compute filters as described
previously

* Create and evaluate pointers for the four most frequent pointer destinations
observed across all runs

* Use the holdout run to test the accuracy of the filter in identifying the
pointer of interest

* We hold out each run one-by-one and average the results (10-fold cross
validation)

Methodology

* To test the performance of a filter, we simply ran it over all aligned
pointer-sized regions in the dumped heap from a held-out run

e Future work should demonstrate an end-to-end attack with a real read
vulnerability. We assumed the presence of such a vulnerability and simulated
it by dumping the heap

* Filter performance metrics:

Precision = ,
+ False Filter Matches

Recall =

Experiments: Vim

* Simple single-threaded test program with a single, well-defined heap
region

Rank Region Offset True Positives False Positives Precision Recall
1 vim_basic_4 90912 25650 / 25650 0/ 1525680 1.0 1.0

2 libc-2.31.s0_5 3040 25451 /25452 160 /3077198 .994 999
12 libc-2.31.s0_5 2816 2360 / 2361 1375 / 3100289 .632 999

14 libc-2.31.s0_5 3072 800 / 802 1378 / 3101848 .367 998

Experiments: Firefox

* Wanted to simulate vulnerability in JS engine heap

* Unlike Vim, Firefox JS engine uses an mmap-based allocator
(jemalloc), so the heap is spread over multiple VMAs

* |dentified jemalloc heap “chunks” by size, treated the aggregate
contents of these regions as the effective program heap

Rank Region Offset True Positives False Positives ~ Precision Recall Precision (worst region)
1 libxul.so_2 21438312 310724 / 310735 662 / 6242515 .998 .999 988

2 libxul.so_2 21438264 299715 /299716 755/ 6253534 .997 999 993

3 libxul.so_1 27080560 23704 / 25603 2369 / 1612697 .909 926 0.0

4 libxul.so_1 27085200 17300 / 18850 38 / 800250 998 918 0.0

Experiments: Firefox

* Indicates the worst-case performance if attacker were limited to
reading from a single randomly-chosen heap chunk

Rank Region Offset True Positives False Positives ~ Precision Recall Precision (worst region)
1 libxul.so_2 21438312 310724 / 310735 662 / 6242515 .998 .999 988

2 libxul.so_2 21438264 299715 /299716 755/ 6253534 .997 999 993

3 libxul.so_1 27080560 23704 / 25603 2369 / 1612697 .909 926 0.0

4 libxul.so_1 27085200 17300 / 18850 38 / 800250 998 918 0.0

Experiments: Apache

e Used OpenSSL 1.0.1, which is vulnerable to HeartBleed

* |dentified pointers in heap region containing the vulnerable
HeartBleed buffer

e Served a WordPress site with simulated traffic

Rank Region Offset True Positives False Positives Precision Recall
1 libphpS.so_1 252140 48542 / 51565 84 / 3655165 998 941

2 libphpS.so_0 3119280 45109 /45109 11/ 3661621 .999 1.0

3 libphpS.so_0 3100304 26020 / 26020 0/ 3680710 1.0 1.0

o libphpS.so_0 3213931 21850/ 21850 0/ 3684880 1.0 1.0

Experiments: Take-home Point

* In all tested programs, we were able to identify pointers to static data
sections with very high precision

* We were able to reliably reach static data sections with high
connectivity to the rest of the address space, making them ideal
starting points for memory cartography attacks

* This means powerful memory cartography attacks are possible even
when the attacker has no control of the heap layout

Outline

* Conclusion

Conclusions

* A simple signature-matching algorithm facilitates powerful memory
cartography attacks, even when the attacker does not have control
over heap contents

* Some caveats:

* As in original memory cartography paper, assumes that inter-region pointers
are located at the same offsets on the local machine and the victim machine

* Time/bandwidth constraints imposed by real-world exploits may limit the
attacker’s ability to scan the entire heap

