A Low-Cost Attack against the hCaptcha System

Md Imran Hossen and Xiali (Sharon) Hei
University of Louisiana at Lafayette
hCaptcha

- CAPTCHAs protect websites from bots, spam, and other forms of automated abuse

- hCaptcha is a relatively new **Image CAPTCHA** system developed by *Intuition Machines, Inc*

- Designed as a drop-in replacement for Google’s reCAPTCHA\(^1\)

\(^1\)https://www.google.com/recaptcha/about/

Fig. 1. hCaptcha challenge
Contributions

- We designed and developed a low-cost, end-to-end system to break hCaptcha service.
- We evaluated the system against 270 live hCaptcha challenges and achieved a success rate of attack of over 95% in less than 19 seconds on average.
- We conducted a preliminary security analysis of the hCaptcha system, revealing weaknesses of the CAPTCHA system against automated abuse.
Threat Model

- Our threat model involves an attacker with limited resources
- We will assume the attacker is limited to
 - One computer with a small-size RAM
 - One IP address
- We will aim for an accuracy benchmark above 50%
System Overview

1) Obtaining the challenge

2) Solving the challenge

3) Submitting and verifying the solution
Attack Evaluation
Implementation and Evaluation Platform

- The \texttt{puppeteer-firefox} framework with Firefox web browser was used for \textit{browser automation}
- \textbf{ResNet-18} as the \textit{image classifier} network built on top of PyTorch
 - Pretrained on ImageNet
 - Fine-tuned further on 45000 images from 9 classes extracted from the OpenImages dataset
- Experiments were \textit{run inside a docker instance}
 - Running Ubuntu 20.04 image configured to use only \textit{2GB Memory} and \textit{3 CPU cores} from the physical (host) machine
- Experimental Setting:
 - A regular (non-academic) IP address
 - Caches and cookies were cleared during each run
Frequently Appeared Image Classes

- **5000** hCaptcha challenges were collected from 3 websites during the period of May 2020 to July 2020
- Only **9 image categories/classes** were observed

![Graph showing the frequency of each image category](image)

Fig. 2. The frequency of each image category appears in collected challenges.
Accuracy and Speed of Attack

- The number of challenges attempted: 270
- The number of challenges successfully solved: 259
- **Attack accuracy:** 95.93%
- **Avg. speed of attack:** 18.76 seconds

![Fig. 3. The accuracy and frequency of each image category in the solved challenges.](image)
Accuracy and Speed of Attack (cont’d)

Fig. 4. The probability distribution of no. of images selected per challenge.

Fig. 5. Cumulative distribution of time required by each module.
Influence of IP Addresses

- **An academic, a VPN, and a Tor network** IP address were used for testing
- 200 attempts to solve hCaptcha challenges from each IP address were sent separately with 20-second gaps between each attempt
- Similar attack success rates (**over 95%**) were achieved
Adaptability

● Both the Selenium and Puppeteer browser automation framework used

● Different experimental settings (e.g., setting the browser in headless mode, using various window.navigator properties) tested

● No discrepancies observed

● No blocking encountered

● Achieved over 90% accuracy of attack across all settings
hCaptcha allows website owners to adjust the **difficulty levels** for the served CAPTCHAs on their websites. It supports 4 difficulty levels: easy, moderate (default), difficult, and always on. The blocking was tested on moderate and difficult difficulty levels by attempting to solve 400 challenges for each of them. All the requests to our web application were sent in a row with only a 1-second delay between two subsequent requests. Only 17 of our attempts (out of the total 800 combined) were blocked with the message — “Rate limited or network error. Please retry.”

Accuracy of attacks: 92.25% and 88.5%
We also attempted to trigger blocking deliberately by sending too many requests simultaneously.

50 instances of our bot program were run concurrently against our hCaptcha-enabled web page for 10 times with a 2-second delay between two subsequent iterations.

This time, the hCaptcha system blocked many of our requests with the warning message — “Your computer or network has sent too many requests”.

The number of blockages for the 10 iterations are 24, 40, 48, 29, 28, 26, 26, 29, 30, and 28.
Image Repetition

- 48330 images were used for analysis
- Both the MD5 and perceptual (pHash) hashing algorithms were used
- Both algorithms yielded the same results
 - 9854 redundant images belonging to 1985 sets of identical images were found
Online Attack

- We performed an online attack using 3 vision APIs for image recognition.
- **Google Cloud Vision, Microsoft Computer Vision, and Amazon Rekognition.**

<table>
<thead>
<tr>
<th>Image</th>
<th>Google Cloud Vision</th>
<th>Microsoft Computer Vision</th>
<th>Amazon Rekognition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Land vehicle, Vehicle, Transport Truck, Car, Mode of transport, Motor vehicle, Trailer truck, Trailer, Asphalt</td>
<td>outdoor, truck, road, transport, street, parked, trailer, car, large, lot, parking, front, sitting, driving, side, bed, city, bus, fire, man</td>
<td>Truck, Transportation, Vehicle, Tow Truck, Person, Human, Trailer Truck</td>
</tr>
</tbody>
</table>

Fig. 6. List of labels returned by three image recognition APIs for a sample image from hCaptcha challenge
Online Attack (cont’d)

<table>
<thead>
<tr>
<th>Vision API</th>
<th>Accuracy (%)</th>
<th>Speed (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon Rekognition</td>
<td>92</td>
<td>16.85</td>
</tr>
<tr>
<td>Microsoft Computer Vision</td>
<td>98</td>
<td>14.93</td>
</tr>
<tr>
<td>Google Cloud Vision</td>
<td>96</td>
<td>15.28</td>
</tr>
</tbody>
</table>

Table 1. Attack performance of off-the-shelf vision APIs.
Countermeasures

- **Use broader image categories**
 - Expanding the image categories will make the data collection process relatively challenging

- **Adversarial examples**
 - Can lower the attack accuracy by misleading deep neural networks

- **Resist web automation software**
 - Resisting requests originating from widely used web automation frameworks will likely lower attackers’ success rates

- **Commonsense knowledge**
 - Machines usually perform poorly involving a task that requires higher-order reasoning
Conclusion and Future Work

• hCaptcha challenges could be solved automatically with high accuracy using deep learning-based methods

• Even a low-resource adversary can mount a powerful attack using our method

• The CAPTCHA system lacks other stringent security requirements making it highly vulnerable to automated abuse

• In the future, we want to test our methodology on other similar Image CAPTCHA systems
Thanks for listening!

Questions?

Md Imran Hossen, md-imran.hossen1@louisiana.edu

Xiali (Sharon) Hei, xiali.hei@louisiana.edu