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Abstract 
Traditionally, cryptography and its applications are 
defensive in nature, and provide privacy, authen tica- 
tion, and security to  users. In this paper we present the 
idea of Cryptovirology which employs a twist on cryp- 
tography, showing that it can also be used offensively. 
By being offensive we mean that it can be used to  
mount extortion based attacks that cause loss of access 
to information, loss of confidentiality, and inform,ation 
leakage, tasks which cryptography typically prevents. 
In this paper we analyze potential threats and attacks 
that rogue use of cryptography can cause when com- 
bined with rogue software (viruses, Trojan horses), and 
demonstrate them experimentally by presenting an im- 
plementation of a cryptovirus that we have tested (we 
took careful precautions in the process to  insure that 
the virus remained contained). Public-key cryptogra- 
phy is essential to the attacks that we demonstrate 
(which we call “cryptovirological attacks”). We also 
suggest countermeasures and mechanisms to cope with 
and prevent such attacks. These attacks have impli- 
cations on how the use of cryptographic tools shiould 
be managed and audited in general purpose computing 
environments, and imply that access to  cryptographic 
tools should be well controlled. The experimental virus 
demonstrates how cryptographic packages can be con- 
densed into a small space, which may have indepen- 
dent applications (e.g., cryptographic module dlesign 
in small mobile devices). 

1 Introduction 
Every major technological development carries with it 
a certain degree of power. This power is often bene- 
ficial to society, but more often than not it can also 
be severely misused. A perfect example of such a 
technology is atomic fission. Cryptography is a bless- 
ing to information processing and communicationis (as 
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atomic fission is to  energy production), because it al- 
lows people to  store information securely and to con- 
duct private communications over large distances. It 
is therefore natural to  ask, “What are the potential 
harmful uses of Cryptograplhy?” We believe that it is 
better to investigate this aspect rather than to wait 
for such att,acks to  occur. In this paper we attempt 
a first step in this directioin by presenting a set of 
cryptographiy-exploiting computer security attacks and 
potential countermeasures. 

The set of attacks that we present involve the 
unique use of strong (public key and symmetric) cryp- 
tographic techniques in conjunction with computer 
virus and Trojan horse technology. They demon- 
strate how cryptography (namely, difference in com- 
putational capability) can allow an adversarial virus 
writer to  gain explicit access control over the data 
that his or her virus has access to (assuming the in- 
fected machines have only polynomial-time computa- 
tional power), whereas from an information theoretic 
point of view (assuming all1 parties are all-powerful) 
this is impassible. This idea is then extended to allow 
a distributed vzrus to gain itself explicit access control 
over the information on infected machines, provided it 
is not detec1,ed early enough and vigorously destroyed. 
This shows that viruses can be used as tools for extor- 
tion, potential criminal activity, and as munitions in 
the context of information warfare, rather than their 
traditional reputation of being merely a source for dis- 
turbance arid annoyance. I11 general, we define cryp- 
tovirology to  be the study of the applications of cryp- 
tography to  computer viruses. We note that cryptogra- 
phy has been used to help prievent viral attacks (i.e., by 
providing strong integrity checks) and to  try to hide a 
virus’s structure, yet formal cryptographic paradigms 
have never before been usedl successfully as a weapon 
in viral attatcks. 

In describing the first set of attacks, a new virus 
model is proposed. The model is motivated by biolog- 
ical organisms that are capable of modifying the host 
to  depend on the organisms themselves. Such a virus 
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forces a symbiotic relationship between itself and its 
host. Alternatively, this dependency may also be de- 
rived from an effect that the virus has on the host, 
such that only the author of the virus can reverse the 
effect. As we shall point out, this later situation is a 
mere approximation to the former. 

Preventive measures are described in response to  
the attacks. They are a step in the right direction 
to help prevent and recover from such attacks. In fact, 
it is shown that the public availability of cryptographic 
tools without proper access control, can put the data 
on a computer system at serious risk. 

1.1 Organization 
Background information on viruses is given in section 
2; the notion of a computer virus is defined and a set of 
general rules that pertain to computer viruses is given. 
We develop cryptovirology from the perspective of sur- 
vivability. Section 3 introduces a definition of what we 
believe to be a computer virus with the property of 
high survivability (i.e., one that forces the host to  re- 
tain the virus), and its inherent characteristics. Exam- 
ples of attempts to  make the high survivability virus 
are also discussed. 

Section 4 describes a set of cryptovirological attacks 
which attempt to  approximate the high survivability 
virus (i.e. not being survivable, but having an effect 
which is survivable unless the virus writer interferes). 
Rather than having the absolute survivability prop- 
erty, the attacks create absolute dependency on the 
virus writer. Section 5 presents a virus that attempts 
to manage its own keys in a distributed fashion based 
on secret sharing techniques, so there is a dependency 
of the local user on the (distributed) virus itself. In 
section 6 we suggest measures that can be taken to  
reduce the threat posed by cryptovirological attacks 
and to  minimize abuse of cryptographic facilities. The 
Appendix contains a description of our experimental 
cryptovirus as well as the virus performance on a Mac- 
intosh computer (but no code is described!) 

2 Background 
The notion of a Trojan horse was first discovered by 
D. Edwards and was described in the Anderson report 
[And72]. It is a program that resides in another pro- 
gram that does something that the user is unaware of. 
A Trojan horse may, for instance, reside in a compiler 
and transmit source code to  the author of the Trojan. 
One of the early Trojans was a binary code segment 
that was inserted into Multics binary code that was 
distributed to  all sites [KS74], thus demonstrating the 
feasibility of and difficulty of finding a Trojan horse. 

To guard against such attacks it is necessary to confine 
programs into small domains with only the rights that 
are needed for their functioning and to  guard their in- 
tegrity (either in binary or source code modes). Lamp- 
son showed that as long as a borrowed program does 
not have to retain information, confinement can be 
achieved by restricting access rights to  the program. 
However, most of the time covert channels are avail- 
able for leaking information [Lam73]. 

Computer viruses are similar to  Trojan horses since 
they remain hidden from the user. Some viruses are 
benign and merely consume CPU cycles, while others 
overtly delete and overwrite data. We will not present 
a rigorous definition of a computer virus here. Instead, 
we will adopt the following definition put forth by Fred 
Cohen. A computer virus is defined as a program that 
can infect other programs by modifying them to in- 
clude a, possibly evolved, copy of itself [Coh89]. 

The fields of virus and antivirus technology are 
broad in scope and are slowly changing over time. Per- 
haps the latest development in the field of virus tech- 
nology is the advent of Polymorphism. A virus that 
is polymorphic creates offspring with object code that 
is different from that of the parent. The original com- 
puter viruses were monomorphic in nature. That is, 
their object code remained essentially the same across 
viral generations. Polymorphic technology was devel- 
oped in response to  viral scanners which use databases 
of search strings to  identify known viral strains. 

Viral polymorphism, among other things, involves 
the encipherment of the main body of the virus to make 
it difficult to detect. Typically, the XOR operation 
is used with a randomly chosen value to  accomplish 
this. The resulting ciphertext is in no way secure from 
simple cryptanalysis, but makes the task of identifying 
the main body of the virus using fixed-string scanners 
more difficult. We do not include weak methods of 
“virus self-encryption” as part of cryptovirology. 

There are several rules that  all viruses seem to obey. 
(1) By virtue of being programs they all consume CPU 
time and occupy space. Also, (2) since viruses need to 
gain control of the program counter in order to execute, 
they must (directly or indirectly) modify code in the 
host system in order to do so. The last and perhaps 
most interesting rule of viruses is (3) their inherent 
vulnerability to user scrutiny. Viruses can always be 
frozen and analyzed by the user. They can be backed 
up (or a backed up copy can be found) and later scru- 
tinized in detail using a low level debugger. In what 
follows we show that this vulnerability can be effec- 
tively bypassed if strong cryptographic techniques are 
employed and if the virus acts fast enough, i.e. before 
detection. 
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3 High Survivability Virus 
We are interested in making the host dependent on the 
virus. Thus, we design cryptovirology from the point of 
view of survivability. That is, a virus can survive in the 
host if it makes the host depend in a critical way on the 
very presence of the virus itself. If we cannot achieve 
this, we may approximate it by writing a virus such 
that its effect on the host is only reversible by the virus 
writer (so the dependence is approximated by making 
the host depend on the author rather than the virus). 
In section 3.1 we define a highly survivable computer 
virus (or h-s virus), and conclude with a fevv examples 
of past attempts to implement it.  We also ‘discuss the 
possibility of its existence. We then describe a n  ap- 
proximation to  high survivability, namely, having an 
effect that is survivable and thereby leaving the host 
at the mercy of the virus writer. We analyze the possi- 
bility of the survivable effect (or damage) with respect 
to Information Theory and Computationall Complex- 
ity. Note again that we are interested in an effect that 
gives an advantage to  the virus writer rather than hav- 
ing an effect where no one can help (like viruses that 
simply erase files for annoyance). 

3.1 Survivable Virus 
Virus writers try very hard to  make their viruses diffi- 
cult to  detect, since they know that users will try to re- 
move them once they are found. Polymorphic, Stealth, 
Mutation, and Tunnelling technologies are a virus’s 
best means for evading detection in systems that run 
antiviral software. The high survivability property of 
a computer virus that we propose is one that forces a 
non-beneficial symbiotic relationship between a virus 
and its host so that the survival of the virus is essential 
to the survival of the host’. 

Survivability is an issue common to viruses, Trojan 
horses, worms and other forms of “malware.” We will 
use “virus” in the discussion below to  represent all of 
these. The following is our definition of ab computer 
virus with the “high survivability property”. 

Definition 1 A computer varus has the “high surviv- 
ability” property if it can maintain control over a! crit- 
ical host resource R, such that it grants access to R, 
solely when it is needed, and such that i f  Ihe virus is 
modified or removed, R, as rendered permartently inac- 
cessible. 

Note that this definition implies that the virus has 
modified the machine’s state to  such a point that if 

‘This is analogous to H. R. Giger’s fictional ‘‘facehugge~~’’ that 
appearedin the movie “Alien” [BS79]; the unfamiliar reader who 
is interested in the gory details may see the movie. 

you rid the machine of the virus you lose access to the 
resource. This is a definition which is optimal from 
the virus writer’s point of view. We stress that it is 
not necessarily achievable- but if a virus can achieve 
such contrcll, and if the resource it holds “hostage” is 
crucial, then the virus will survive in the host. 

Four notable rogue programs have appeared in the 
wild that seem to reflect the intention of remaining res- 
ident after detection. These programs are the One-Half 
virus, the ILZR virus, the ,4IDS Information Trojan, 
and the KOH virus. 

The One-Half virus operates by encrypting the hard 
drive starting from the last cylinder and slowly moving 
forward over time. The One-Half virus uses a symmet- 
ric cipher, and stores the secret key within itself. To 
rid the host of the effect of the virus, the key can be 
obtained from the virus codle, and the damage undone. 

The LZR virus is even closer to  a h-s computer virus. 
LZR takes control of reads and writes to  the hard disk 
using a relatively unknown system call [DB95]. LZR 
writes error correction information to  the disk, even 
though error correction is not usually performed by 
the operating system. As information is written to  
the disk, the data is followed by the error correction 
data of the viruses’ choosing. If the virus is removed, 
the viral routine will not be called, and the files will 
be rendered incomprehensible to user programs. The 
damage caused by LZR can be undone by copying all of 
the damaged files to floppy disks and then disinfecting 
the virus with an appropriate antiviral program. This 
disinfection works because the error correction routine 
is not invol~ed when writes are made to floppy disks. 
Even if thiis error correction mechanism worked with 
floppy disks, it would be possible to write an antiviral 
program that would repair all the data over a period 
of time. 

Though not a virus, the AIDS Information Trojan 
nonetheless exhibits traits similar to  that of a h-s com- 
puter virus. It provides ingormation on the users risk 
of contracting AIDS, and at the same time encrypts 
the users hizrd drive after 90 reboots. The user is then 
informed that a license fee must be paid in return for 
the decryption key [Sla94]. This Trojan is one of the 
first extortion attempts made using rogue programs. 
Unfortunately, we do not know the exact cipher used 
by the AIDS Information Trojan. It can be considered 
a step in the direction of a h-s virus. 

The KOII virus is a virus that is used to  encrypt the 
data on a host system. The motivation for the virus is 
to allow encryption to  be performed in the background, 
so that user intervention is; not required. This virus 
incorporates the use of the IDEA cryptosystem and is 
sold commercially. It will be shown later that such a 
virus containing a symmetric cryptosystem cannot be 
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used to  mount extortion-based attacks. 

3.2 Exploiting Intractability 
An approximation to  a h-s virus is a virus having a sur- 
vivable (or lasting) effect. In other words, after detec- 
tion the computer cannot rid itself of the effect of the 
virus unless the virus writer helps. This opens avenues 
for serious attacks by viruses. We next explore sur- 
vivability and survivable effects using two frameworks: 
Information Theory and Computational Complexity. 

Claim 1 From an information theoretic perspective 
everyone has the same ability t o  recover from the dam- 
age caused b y  a virus ( in  particular, i f  the virus writer 
can recover from the damage caused b y  a given virus, 
then so can everyone else, and i f  no one else can re- 
cover from the d a m a g e  caused b y  a given virus then the 
writer cannot recover as well). 

Proof Let S denote a machine (or system) and let V 
denote a virus capable of infecting S. We assume that 
V’s program is available (it is well understood) to  the 
victim as well as to the writer. This is so, since from 
an information theoretic point of view, once the virus 
program is available its effect can be fully understood 
(as was demonstrated in [ER88]). 

Assume that S is initially uninfected. V is either 
obtrusive or non-obtrusive. Consider the case in which 
V is non-obtrusive, meaning that it does not interfere 
with the current state or the stored states of S. In this 
case, given SI we can always get the current (later) 
state with or without the virus being present in this 
computation. Since the virus is non-obtrusive it follows 
that everyone can just remove the virus. Now consider 
the case where V is obtrusive and modifies the states of 
S. For example, V may erase or XOR the current state 
and all previous states stored on S. If a backup of a 
previous program and state cannot be provided, then it 
is impossible for anyone to undo the damage caused by 
V to the data on S. Or more formally, the distribution 
of the correct state given the damaged state is (equally) 
available to everyone (the writer as well as the victim). 
Note that if there is a backup of the state prior to 
infection, we can restart the computation and we are 
effectively in the non-obtrusive case again. 

It therefore follows that from an information theo- 
retic perspective, either everyone can recover from the 
damage caused by V,  or no one can recover from the 

cl damage caused by V (not even the writer). 

in a way that it is easily recoverable, changes S such 
that one can use a backup to recover, or changes S 
such that there is a probability distribution of initial 
states- and in the worst case the initial state is not 
determinable. 

In all these cases, from Information Theoretic per- 
spective, the virus writer cannot affect the outcome 
in this matter. Now we consider the case in which the 
computational resources of the victim are polynomially 
bounded. 

Claim 2 From the perspective of Computational Com- 
plexity, there are cases where a virus can cause damage 
such that the victim cannot recover, but the varus writer 
can. 

Proof We assume the case that no backups exist 
(if there are backups then clearly the victim can re- 
cover). The proof of this is by exploitation of the 
assumed strength of public-key cryptography (which 
was used before to break symmetries based on infinite 
computational power of parties assumed by Informa- 
tion Theory’). 

This is easy to achieve by supplying the virus with 
a public key. The virus can encrypt data D on the 
host machine S with this key. Evidently, from the 
definition of a Public Key Cryptosystem and from the 
fact that  only the virus writer knows the private key 
corresponding to  the public key of the virus, the claim 
holds. 0 

Note that we have shown a way to  bypass the last 
rule of computer viruses that we presented earlier. The 
virus contains trapdoor information such that this in- 
formation does not reveal itself when the virus is scru- 
tinized. Does this solve the problem of making a virus 
with the high survivability property? We shall present 
evidence that indicates that it does not. 

Let F be a h-s virus, D be a critical data file in 
host system S that  contains several (software and hard- 
ware) components, and U be the user of S such that 
F ,  D E S .  Clearly, the user is external to  the machine, 
thus, U S. Let R be a relation on the set of ele- 
ments consisting of the user U ,  the virus F ,  and the 
data D ,  where (z,y) E R iff z can encrypt and de- 
crypt y. Our goal is to  have ( F ,  D )  be contained in R 
and at the same time have ( U ,  0) not in R. We shall 
see from the following three cases that either ( F ,  0) is 
not in RI or that (U,  0) is in R by transitivity of the 
encryption/decryption capability relation. 

Claim 1 was proven based on Information Theory - 
that is, if the victim is infinitely powerful he can still 
either recover, partially recover, or not recover at all. 
The virus either does not change the state, changes S 

21n [SRA79] (see also [Sch96] pp. 93) it was shown that deal- 
ing fair hands from a deck of cards by two parties is impossible 
from an information theoretic point of view and possible based 
on computational complexity via cryptographic assumptions. 
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F contains a secret key and tries to monopolize 
critical resource D. From the way P is con- 
structed, it is clear that ( F ,  D) is in R. Since 
U can read and control the data on S ,  and 
since F resides on S ,  the ( U ,  F )  is in R. Since 
{ ( U ,  F ) ,  ( F ,  D ) }  is in R, (U,  0) is in R: by tran- 
sitivity, It follows that U can always dtecryplt D’ 
to get D. Since F cannot prevent U from having 
access to  D ,  F is not a h-s computer virus. 

F contains a public key and no private key. F 
can then encrypt D to  get D’, but cannot decrypt 
D’, therefore ( F ,  D )  is not in R. It follows that 
F cannot monopolize critical resource D ,  arid is 
therefore not a h-s computer virus. 

F contains a public key and its corresponding pri- 
vate key. It follows that F can transform D into 
D’ and vice-versa, thus ( F ,  D) is in R. However, 
since ( U ,  F )  is in R, U has access to  the public 
and private keys in F .  It is therefore the case 
that ( U , D )  is in R by transitivity. Since F can- 
not prevent U from having access to D ,  F cainnot 
be a h-s computer virus. 

Intuitively, it makes sense that implementing the h-s 
virus is a difficult task. A h-s virus must not only be 
immune to  the scrutiny of all users, but must also be 
able to control access to  D.  We leave the ]possibility 
of the existence of h-s computer viruses as an open 
problem. 

Note, however, that in case 2 the virus writer accom- 
plishes something unusual. If F manages to  encrypt D 
to get D’ and if U does not have a backup of D, then 
only the virus writer will be able to  transform D’ back 
into D. This act breaks the symmetry between what 
the user has access to  and what the virus writer has 
access to as claimed possible in Claim 2. A first order 
approximation to the h-s computer virus is therefore 
possible since the virus can do damage that the victim 
cannot repair, but that is possible to fix. This means 
that an adversarial virus writer can gain explicit access 
control over user data by having a survivable effect. 

Adleman has shown that detecting viruses is an in- 
tractable problem, and that it seems unlikely that pro- 
tection systems predicated on virus detection will be 
successful [Ad190]. His approach towards computer 
viruses was from the perspective of Computability, 
whereas our approach is based on Computational Com- 
plexity We have shown that even if a virus is detected 
in a given system, it may be a computationally in- 
tractable problem to reverse its effect on the host sys- 
tem (assuming public-key cryptography is strong:). 

4 Crylptovirological Attacks 
In this section a series of cryptovirological attacks that 
use the above observations are presented where the 
possessor of the private key of the virus is the author. 

4.1 Survivable and :Reversible Crypto- 
graphic Attack 

We define a cryptographic attack to be a denial of ser- 
vice attack using a public key. The attack is survivable 
unless the virus writer revers“ it. A cryptographic at- 
tack can be performed by a cryptovirus or a cryptotro- 
jan, which are defined by the following. 

Definition 2 A cryptovarus (cryptotrojan) as a com- 
puter virus (Trojan horse) that uses a public keg gen- 
erated by the author to  encrypt d a t a  D that resides on 
the host system, an such a way that D can only be re- 
covered by t,he author o f t h e  virus (assuming no fresh 
backup exists). 

The setting for the denial of service attack is as 
follows. Imimediately following encryption, the cryp- 
tovirus notifies the user and demands that the user 
contact the virus writer. Once contacted, the virus 
writer demands a ransom in return for the private key. 
Once the private key is obt,ained, the user is able to 
decrypt D’ to get D (assuming no backups). A draw- 
back from the perspective of the virus writer is that he 
cannot free one victim without potentially freeing all 
the victims, because the freed victim could publish the 
private key. This drawback can be solved if the virus 
contained multiple public keys. The virus could ran- 
domly (or otherwise) choose a key for a given attack, 
thereby allowing the virus writer to  free some victims 
without freeing all the rest. This gives the virus writer 
more control over who he can selectively free. Hcwever 
carrying m a y  keys is expensive. Also, note that this 
is only a partial solution, since users may cooperate 
with each other. Another drawback is the fact that 
encrypting a file directly with a public key is slow. 

To solve t8he above problems we will employ hybrid 
cryptosysterns, in which the session key is used to  en- 
crypt the critical data. If the cryptovirus generates a 
large random session key and encrypts this key with 
the public k:ey for each machine that it attacks, then 
with very high probability, each victim wi?l need a dif- 
ferent key tlo get their inforimation back. In this case 
the adversary never disclosles his private key to the 
users. Instead, he demands tha.t they give him the 
ciphertext of the session key (and whatever else is nec- 
essary for dsecryption). For .a suitable ransom, he will 
decrypt the session key for them. Also the encryption 
will be fast. 
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The hybrid cryptographic attack is a reversible de- 
nial of services attack. It is reversible since by com- 
municating with the victims, the virus writer is able 
to return the data that is denied. This contrasts with 
the traditional notion of a denial of service attack in 
which, for example, data is permanently deleted. 

The following is a more detailed description of 
the hybrid cryptographic attack. A cryptovirus is 
equipped with a strong random number generator and 
a strong seeding procedure and mounts an attack by 
generating a random session key I(, and a random ini- 
tialization vector I V .  Let the public key in the virus 
and private key of the writer be denoted by I<j and 
I<’, respectively, where f denotes the virus and w de- 
notes the writer. The plaintext message m = { I V ,  I<,} 
is formed by the virus, and is encrypted with IC, to  get 
the ciphertext m‘ = {IV, K,}Iij. The virus then en- 
crypts the critical system data using the I<, , I V ,  and a 
symmetric algorithm. A suitable mode of operation of 
the symmetric cipher is output feedback mode (OFB) 
[Den82, Sch961. After encryption the original file is 
overwritten. 

The next part of the attack is aimed a t  getting the 
user to contact the virus writer. The virus prints a 
message to the screen containing m’ and the phone 
number of the virus writer. If the victim has a back- 
up of the data file, then the victim need not contact the 
virus writer. The victim may then try to disinfect the 
system. If there is no back up, then the victim must 
contact the virus writer to retrieve the original data. 
Upon making the phone call, the virus writer asks for 
m’ in addition to a suitable ransom. Once the ransom 
is paid, the virus writer decrypts m‘ using K,. The 
session key and 1V are then given to the victim. Since 
the victim never finds out I<’,, he is unable to assist 
other victims of the cryptovirus with high probability. 

Remark I: Sending the information to the author 
does not necessarily reveal the author. The informa- 
tion may be asked to be posted publicly while being 
encrypted using the public key of the attacker. A pub- 
lic bulletin board can be used for such purposes. Unlike 
physical resources, information resources do not need 
to be shipped to the attacker, again due to  the power 
of cryptography. 

Remark 2: Stealing attack: We can use a cryp- 
tovirus to securely steal information from a remote lo- 
cation and use the viral spread as the communication 
medium. Rather than announcing its presence after 
data D is encrypted, a cryptovirus can simply append 
D‘ to itself (perhaps without affecting the local copy). 
The virus then replicates as usual but kills any ances- 
tors or siblings that it encounters that do not already 
contain D’. If the author is lucky he will encounter an 
offspring with D’ and decrypt it.  The virus is a secure 

communication medium since no one else, except the 
writer, has the ability to  decrypt D’. 

We end this section with a description of a general 
purpose cryptotrojan that is capable of compromising 
system security while minimizing the authors risk of 
getting caught. Packet sniffing and keystroke monitor- 
ing Trojan horses are a well known method of stealing 
passwords. Such Trojan horses typically store the pil- 
fered passwords in a hidden file. The drawback to  these 
Trojan horses is that the passwords that are hidden are 
at risk of being found by system administrators. In 
addition, the attacker must either make the passwords 
publicly accessible or must later log in to  download the 
passwords. A cryptotrojan using the author’s public 
key solves both of these problems and provides safe 
storage for the stolen information. 

4.2 Information Extortion Attack 

The information extortion attack is an attack in which 
the virus writer is able to force the victim to  exchange 
information in return for the session key and I V ,  and 
in addition provides a mechanism for verifying the au- 
thenticity of the data being extorted. This attack can 
only be carried out successfully if the virus succeeds 
in encrypting critical information that cannot be re- 
placed by the victim. Systems that manipulate up-to- 
the minute valuable information are highly susceptible 
to such an attack. This attack uses the hybrid crypto- 
graphic attack, with a few modifications. This attack 
can extort resources, but can also be used as a tool for 
espionage and information warfare. 

The information extortion attack permits a virus 
writer W to demand a file of arbitrary size by includ- 
ing a checksum of that file in the message block m. In 
this attack, W demands the desired file in addition to  
the ciphertext of the message block m. The following 
is the data structure for the message block: 

m = {ChkSm, W,  IC,} 
m’ = { C h k S m ,  IV, K S } K j  
li‘j = 
Kw = 

C h k S m  = 
IV = random init ialization vector 
K ,  = random session key 

public key  o f  W in v i rus  F 
private key  o f  W 
checksum o f  f i l e  desired by W 

The only value above that is not strictly random is 
C h k S m ,  which is a function of the session key, I V ,  and 
the file that the virus writer desires. The attack works 
as follows. F is written by W and is programmed to 
look for critical data D and desired data H .  Upon mi- 
grating to  the correct host system S, the virus mounts 
a hybrid cryptographic attack in the following way. It 
first generates 1V and IC,, randomly using its built in 
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random number generator. It then uses a symmetric 
cipher to encrypt D ,  and overwrites the original fille. F 
then looks for data H .  If it is found, a cryptographic 
checksum of it is performed to get ChkSm. This is 
accomplished by using H ,  I V ,  I<‘,, and a symmetriic ci- 
pher (say, in CFB mode [Den82, Sch961). The message 
m is then formed by F and encrypted with Icj to get 
m’. After m is overwritten in RAM, the virus displays 
m’ to the user and instructs the user to contact the 
virus writer and upload m’ along with H .  This com- 
pletes the information extortion attack by the virus. 

Provided the user follows the prescribed protocol, 
he sends W the ciphertext m’ and data H .  The virus 
writer then decrypts m‘ with K ,  and extracts I V ,  I<, , 
and ChkSm. W then performs a checksum on fi us- 
ing I V  and I<, and compares the result to  ChkSm. 
If the checksum matches, W assumes H is authentic 
and sends {I<’,, I V }  to  the user. Otherwise, W as- 
sumes that the user altered H and does not send him 

If the 
user doesn’t want I<‘, then he can send W an H of his 
choosing and its corresponding m’. He can do this by 
simply choosing H and performing the attack himself. 
It follows that the attack will only be successful if D is 
a critical resource that is not backed up. Now suppose 
that the user wants { Ii’, , I V }  but doesn’t want to give 
the virus writer H .  He could do this by modifying H 
and either sending him m’ or an altered m’. If he sends 
m’ along with an altered H ,  the virus writer will de- 
tect this when he computes the checksum of H .  Now 
consider the case where the user sends a modified H 
and modified m‘. In this case, since the user does, not 
know IC, he does not know how to  alter m’ correctly 
and with very high probability will be caught vvhen 
W computes the checksum of H .  Even if the check- 
sum succeeds, chances are he will receive the wrong 
Ks. Any forgery by the user must be done without 
knowledge of the session key, I V ,  or checksum value. 
The assumption being made here is that the session 
key and IV are not captured by the user during, the 
short period of time in which they are in RAM. 

The information extortion attack could translate di- 
rectly into the loss of U S .  dollars if electronic mioney 
is implemented. In fact, the potential for attacks on 
anonymous e-money has been recognized in the crypto- 
graphic literature [vSN92, BGK95, SPC95, JY9611; we 
materialize an attack via a cryptovirus. A specialized 
cryptovirus could be designed to  search for e-money 
notes and encrypt them. In this way, the virus writer 
can effectively hold all the money ransom until half of 
it is given to him. Even if the e-money was previously 
encrypted by the user, it is of no use to the user if 
it gets encrypted by a cryptovirus. Electronic money 

{ K s ,  IV} .  
Suppose that the user wants to  cheat W .  

must therefore be treated with great care, since it is 
subject to  ransom on any machine that is subject to  
viral attack. 

Appendix A contains a description of our experimen- 
tal cryptovirus. The virus is a Macintosh virus which 
performs thje information extortion attack on a spe- 
cific date. The virus is under 7k bytes in length and 
requires a total of 12 seconds to  complete its attack. It 
contains code for RSA, the Tiny Encryption Algorithm 
[WN94] and truerand [MB95]. 

The cryptographic engine of the virus represents a 
beneficial application of our work: the demonstration 
of a space efficient cryptographic module (applicable 
to  small devices like mobile units). 

5 The Secret Sharing Virus 

In this section we show how to implement a virus that 
is a very close approximation to a h-s virus. Whereas in 
the above attacks the virus author managed the keys 
and owned the private key, here the virus itself will 
manage its private key. This sounds paradoxical, since 
a virus holding a public key and managing its private 
key can be analyzed and could lose its power. How- 
ever, this is accomplished by changing our notion of 
a system S to  be a network of computers, and to re- 
gard the host as being the entire network. We use the 
distributed environment to  hide the key in the virus 
copies them,selves. 

Let us describe this in some detail. We have shown 
how Public Key Cryptography can be used in a virus to 
encrypt information such that the user cannot retrieve 
it. In order to  be able to  decrypt D’ to  get D ,  the 
private key must also be stoired somewhere, since oth- 
erwise D’ cannot be decrypted. We cannot store the 
entire private key at one node in the network, since 
this would give the user of that node the entire private 
key. By considering an entire network as a host we 
effectively divide and conquer the power of the user, 
since we now have many different users who do not 
have access to  each others data. The secret sharing 
virus takes advantage of this property by sharing its 
private key among m nodes, where m > 1. The virus 
therefore exploits the access controls that users place 
on themselves to  keep its private key secret. 

The idea is that a virus will spread itself around the 
network, and may act autonomously or wait for out- 
side control to  act as an agent of the writer. Note that 
the local users my wipe out parts of the virus (assum- 
ing they have back-ups), but then the total network 
may be damaged (since we need the entire virus pieces 
to recover). It may therefore be useful for the virus to  
immediately notify the local machines that if they rid 
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themselves of the virus they may cause global prob- 
lems and ask them to  first consult with the network’s 
administrator. Alternatively, if we are afraid of mak- 
ing the virus’s attack irreversible, we can reserve the 
option for the writer to know the keys that the virus 
generates. This can be accomplished by having the 
virus copies make the private keys they generate avail- 
able to the the author by encrypting them using the 
authors public key and publishing these encryptions. 
This makes sure that at worst we activate the attacks 
above that require the writer’s involvement. 

We will now explore some of the subtleties involved 
in implementing a secret sharing (or key splitting) 
virus. Consider an ancestry of secret sharing viruses 
that make use of one public/private key pair. A virus 
that resides on node i cannot decrypt D’ to  get D with- 
out exposing the entire private key to the user of node 
i. It follows that the user of node i would know the 
private key from then on. In order to  securely deny ac- 
cess to future data, the viruses must therefore be able 
to generate other public/private key pairs. This is not 
an easy problem, since the viruses cannot start with 
the private key and then split it up. This problem is 
similar to a traditional problem in secret sharing. How 
can a group of people share a secret such that no one 
knows the secret until it is reconstructed? This im- 
plies that an arbitrator cannot be used to divide up 
the secret. Ingemarsson and Simmons demonstrated a 
protocol that accomplishes this [IS91]. Frankel demon- 
strated a way to do this using a scheme similar to El- 
Gama1 [FraSO]. Both of these protocols are for appli- 
cations in which a secret is shared statically, i.e. it is 
split up only once. Our secret sharing virus splits up a 
secret with each generation. Since the virus replicates 
exponentially, a dynamic tree-like structure is used to 
generate keys used in denial of service attacks. Our 
virus is based on the ElGamal cryptosystem [ElG85]. 

We will now explain how the secret sharing virus 
operates. Consider m viruses on m nodes that want 
to generate a public/private key pair (m  > 1). All 
the viruses share the same y and p ,  such that y is a 
generator modulo p ,  where p is a large prime. Each 
virus generates a random value, denoted by zz, such 
that xi is less than p .  The virus on node i then cal- 
culates y;, using y; = g”‘ mod p .  The viruses then 
publish their yi’s anonymously over a public channel 
(and perhaps they also publish the encryption under 
the writer’s key of their private choices - if we choose 
this option). Upon reading the values from the chan- 
nel, each virus computes y = yi (mod p ) .  Every 
virus therefore has the public key y, y, and p .  The 
private key 3: can only be found by obtaining all of the 
x,’s and computing, x = ELl 2; (mod p - 1). Fur- 
thermore, since each node i can only access x;, none 

of the users can calculate x without collaborating with 
the (m- 1) other users. For availability purposes a key 
may be kept a t  a number of places (and by the writer if 
we so choose). The network of m viruses therefore has 
the ability to generate an arbitrary number of pub- 
lic/private key pairs, such that the private keys are 
shared secretly. To free all m nodes each virus must 
publish its xi so that the private key can be calculated 
by each virus (this is what is shown in [FraSO]). 

A dynamic distributed virus: Consider the case 
in which a set of viruses are spreading on a network. 
Let N be the set of nodes on the net, with IN1 = n. 
Assume that some users trust others and some don’t. 
Also assume that N can be partitioned into users who 
maintain backups and users who don’t. Initially, m 
nodes are infected with the secret sharing virus. Each 
virus is programmed to infect exactly two other nodes. 
In a given round, the viruses generate and publish their 
y;)s anonymously through a public channel (e.g., a bul- 
letin board). Each virus then computes y and produces 
children. Each of the children is told whether it is an 
L child or an R child, where L and R denote left and 
right, respectively. The children of node p are sent 
to nodes randomly chosen from the set N - { p } .  A 
cryptographic attack is then performed on each of the 
original m nodes using the public key. The users are 
then notified of the presence of the viruses. 

At this point each of the victims will need the other 
m - 1 zi’s in order to  get the information back. Since 
the viruses disclosed their yi ’s anonymously, each vic- 
tim has no idea which of the (n-1) other nodes contain 
the zi’s that are needed. Perhaps some victims will try 
to locate each other. Since some users are untrustwor- 
thy, they might try to  give bogus xi ’s .  If two victims 
are competitors or enemies they may not help each 
other a t  all. Users with adequate backups will be able 
to restore their own information, and may choose not 
to publish their xi. Either way, chances are that not 
everyone will get their information back every time. 

Once resident, the L and R viral children gener- 
ate new xi’s and calculate the corresponding new yi’s. 
The L children then take it upon themselves to  de- 
cide whether or not to repair the damage caused to  
the original m nodes. The R children were not given 
the original xi’s by their parents. Each of the L chil- 
dren flips a coin. This toss is then used to  determine 
whether or not to publish the old xi. In any case, all 
of the new y;)s are published. If all m of the L children 
decide to post the old xi’s, then the m original victims 
will be able to  get their information back. Otherwise, 
either a subset of them or none of them will be given 
the xi ’s  necessary to repair the damage. Both the L 
and R children then calculate their own public keys, 
and another round commences. 
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If after a sufficient number of generations, one of 
the users manages to  catch a virus before it insects, 
it will be at  that users discretion to  help the previous 
victims. If m of the victims of a given viral generakion 
get involved in the protocol, then they will1 have to  
collaborate to  reverse the damage. The secret sha,ring 
virus is made possible because each subsequent viral 
generation decides whether or not to  free the previous 
generation, and because the private key only appears 
at  a given node when the key is needed. The virus 
permits four possible outcomes for each node of the 
network: 

1. The node is never inhabited by the virus 

2. The node gets infected, but recovers afte:r a certain 
length of time 

3. The node gets infected and never recovers 

4. The node contains the virus but suffers no damage 
since backups exist 

Remark: A beneficial use of our ideas is organizing 
the storage of keys so that they are shared but users do 
not get direct access to  them. By exploiting the tree 
structure it is possible to  propagate the keys and split 
them into two pieces each time. The internal nodes 
forget their keys but remember the pointers. This as- 
sures a careful storage of sensitive keys that is not eas- 
ily traceable. It can be done with ElGamal public keys 
in the method that we have described above. 

6 Suggested Countermea,, ‘”xs 

There are several measures that can be taken to sig- 
nificantly reduce the risk of being infected by a cryp- 
tovirus, and there are also measures that can insure 
a quick recovery in the event of an attack. Fortu- 
nately, many of the attacks described in this paper can 
be avoided using existing antiviral mechanisms, since 
cryptoviruses propagate in the same way as traditional 
viruses. The first step in this direction is irnplement- 
ing mechanisms to  detect viruses prior to  or imme- 
diately following system infiltration. One od the pio- 
neering works in the area was “An Intrusion-Detection 
Model”, by Dorothy Denning [Den86]. The paper by 
White, Chess, and Kuo entitled “Coping with Com- 
puter Viruses and Related Problems” is another good 
source regarding the virus threat [WCK89]. 
Access control to cryptographic tools: More 
specifically, we suggest auditing access to crypto- 
graphic tools - This is perhaps the major issue that 
needs to be learned. This will help system administra- 
tors identify suspicious cryptographic usage. 

Note that if strong cryptographic ciphers and ran- 
dom number generators are made available to user 
processes, then they will allso be made available to  
cryptoviruses. Such viruses would be smaller than our 
cryptovirus since they would not contain as much code, 
and they would also run faster since such tools are usu- 
ally optimized for speed. Incorporating strong crypto- 
graphic tools into the operating system services layer 
may seem like it would increase system security, but 
in fact, it may significantly lower the security of the 
system if the system is vulnerable to infection. Fur- 
thermore, with such tools readily available] virus writ- 
ers would not even have to  understand cryptography 
to  create cryptoviruses. Note that this rule should not 
apply only to  export control (as it is now) but also to 
protection of an installation by its own administration. 
On-line proactive anti-viral measures: A gen- 
eral suggestion for an on-line network-wide method 
for fighting viruses is in “How To Withstand Mobile 
Virus Attacks” by Ostrovsky and Yung [OY91]. This 
paper describes a mechanism whereby a network of 
processors can cope with network viruses. It is shown 
how local computations (at each processor), and global 
computations can be made robust using a constant 
factor resilience and a polynomial factor redundancy 
in computa1,ion. This defense mechanism is of par- 
ticular relevance to cryptovi rological attacks because 
it allows computations to proceed in the presence of 
cryptoviruses, and also allows automatic recovery of 
user data. While the original suggestion is theoretic 
in nature, a more practical adaptation of this mech- 
anism was suggested in Spirakis et. al. and is called 
“securenet” [SKG94]. This approach can also be ap- 
proximated by conducting ifrequent backups and by 
employing highly responsive and active anti-viral tools 
that execute perpetually. 

7 Conclusion 
We have shown how Cryptography can be used to  im- 
plement viruses that are able to  mount extortion-based 
attacks on their hosts. Public-key cryptography is es- 
sential in enabling the writer. to  get an advantage over 
the victim. We also presented an experimental cryp- 
tovirus that accomplishes this (it demonstrates cryp- 
tographic implementations requiring small space). A 
model based on a distributed network was then formu- 
lated and an algorithm was provided for how to write 
a virus that is able to  gain discretionary access con- 
trol over its host. We also suggested a set of measures 
that can be taken to minimize the possibility of and 
the risks posed by the cryptovirological attacks. 
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A Implement at ion and Perfor- 
mance of the Cryptoviirus 

Precomputation: Two precomputations were per- 
formed to create the cryptovirus. The only other form 
of virus that we are aware of that requires precom- 
putation are those that decompress themselves dur- 
ing runtime. Such viruses save on disk space and are 
therefore less noticeable. The first precompuiatation we 
performed was the generation of a public/private key 
pair. The key modulus used was 512 bits-long. Once 
a pair was found, the values for p and q were then 
tested further to ensure primality. We usecl the GNU 
MP function mpz-probab-prime-p() with 300 repeti- 
tions for testing both p and q. This MP function is an 
implementation of the primality test in Knuth [Kn~u69], 
where it is indicated that 25 repetitions are sufficient. 

Space efficient arithmetic implementation: 
The second precomputation was calculating the recip- 
rocal of the RSA modulus. The virus is equipped with 
an RSA exponent, modulus, and reciprocal of the mod- 
ulus. Though the inclusion of the reciprocal is not 
necessary, it significantly reduced the size of the MP 
library code in the virus. Since the virus already knows 
the reciprocal of the modulus, it need not invoke a, divi- 
sion routine during RSA encryption. The GNU source 
files mpndiv.c and mpn_lshift.c were not needed in the 
cryptovirus as a result of this optimization. The com- 
piled object files of both of these source files comprised 
3,808 bytes (which were saved), 

The algorithm: A special algorithm is used to  per- 
form the modulo operation during RSA encryption. 
This method is a modification of the division algorithm 
based on repeated subtraction. We want t80 compute 
ab mod c, without using any divisions. We are given inv 
and inv-exp, which form the reciprocal of the modulus 
n as defined in Aho, Hopcroft, and Ullman [AHU74]. 
The significant bits are represented by inv, and inv-exp 
is the exponent used to  indicate the location of the dec- 
imal point. Furthermore, we are given that h is 3 ((since 
we only employ one key we are not exposed to  weak- 
nesses of small-exponents when the same message is 
encrypted by various ciphers [Hasgo].) We first square 
a, to get a number 2. We then multiply x by inv, and 
adjust the result using inv-exp. Call this new number 

t .  If x minus t is greater than or equal to  c, then we 
subtract c from x. We then check if x is greater than 
or equal to  c, and subtract c from 2 if it is, etc. This 
process is continued until z is less than e. The result of 
the modulo operation is x [Has]. We then multiply 2 
by U and thle same modulo operation is repeated again. 
The resulting value is u3 mod c .  

Spread prevention: The cryptovirus was designed 
to  only propagate on MC68030 Macintoshes with ROM 
version 120. This includes the Mac SE/30, Mac //cx, 
etc. The virus could very easily be modified to  in- 
fect any Macintosh with the MC68020 processor and 
higher. The virus was tested with system 7.1 and 
was developed in two separate parts. It consists of 
an attacking routine which contains the modified MP 
library, and a viral routine. Upon completion, the at- 
tacking routine was appended to  the end of the virus, 
forming a cxyptovirus. The viral routine was written 
completely in Motorola 68000 assembly language. The 
virus is programmed to attack on August 13, 1395. 
It also has time limit after which it no longer infects 
systems. Our cryptovirus does not bypass heuristic an- 
tiviral programs or activity monitors. Its sole purpose 
is to  demonstrate the inforrnation extortion attack. 

Virus operat ion:  The virus is similar to  TSR 
viruses fouind on IBM PC compatible computers. It 
exists in one of three states at any given time: in a 
program, in the system file, or in a patch to  an op- 
erating sys1,em routine. When an infected program is 
run, the virus gets control before the host program and 
checks to  see if the system file is already infected. If it 
is not infected, the system file gets infected. Control 
is then sent to  the host by the virus. Once the system 
is rebooted, the virus in the system copies itself into 
RAM and modifies the trap dispatch table so that the 
table invokes the resident copy of the virus whenever 
a program is run. The next time a program is run, the 
virus that resides in the patch will see if the program 
is already infected with the cryptovirus. If it is not 
infected, the virus will attempt to  infect it. 

If the machine is rebooted on August 13, 1995, the 
virus in the system file will perform a hybrid crypto- 
graphic attack. The virus fwst generates 384 random 
bits using its built in random generator. This gen- 
erator is based on truerant1.c by D. P. Mitchell, and 
M. Blaze from AT&T [LMS]. These bits form the ini- 
tialization vector and two TEA keys. The virus then 
computes a cryptographic checksum of the file enti- 
tled ‘payroll’ in the System Folder, provided the file 
is present. The checksum is performed using TEA in 
CFB mode [Den82]. The MP library is then invoked 
and the plaintext is encrypted using RSA. The virus 
then attempts to  encrypt a file entitled ‘e-money’ in the 
System Folder using triple TEA in ECB mode. The 
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triple encryption is performed using the first TEA key, 
followed by the second TEA key, followed by the first 
again. This operation overwrites the original file. The 
virus then overwrites the RSA plaintext key in RAM, 
and creates a file entitled ‘VIRUS DAMAGE’ in the 
system folder. This file contains the RSA ciphertext 
and information on how to  contact the virus author. 

truerand physical RNG: truerand produces phys- 
ically random numbers. It operates by setting an alarm 
and then incrementing a counter register rapidly in the 
CPU until the alarm signal occurs. The contents of the 
register is then XORed with the contents of an output 
buffer byte. After each byte of the output buffer is 
filled, the buffer is further processed by doing a right 
circular shift of each character by 2 bits. This moves 
the most random bits into the most significant posi- 
tions. This process is repeated until a truly random 
number is achieved. The values are physically ran- 
dom since they are derived from the difference in pulses 
generated by the CPU crystal and the timer interrupt 
crystal. It thus seems infeasible for a victim to try to 
calculate the random values derived by the virus after 
an attack. 

Performance: 
First note that overall about 10 minutes worth of 

CPU time was spent on the above precomputations. 
The following is a summary of the performance of the 
cryptovirus. The reason for giving an approximate 
running time is that the value varies from program to  
program. Factors such as pending disk 1/0 contribute 
to the variation. 

code size 
attack routines ‘main’ 

Table 1 
Running Time 

bytes src language(s) [ 
434 ANSI C 

system boot (no attack) 
infect a program 
infect file ‘System’ 
perform RSA encryption 
Kenerate 384 random bits 

I = 1 66.7 msec 
1 = I 6.4 sec H 

< 16.7 msec 
M 1 sec 
M 4 sec 

system boot (w/ attack) 
TEA encr. rate (1 round) 
TEA encr. rate (3 rounds) 

The critical file and desired files used in this bench- 
mark were each 30,000 bytes in length. Note that there 
are no disk writes needed in the system boot phase of 
the virus, but disk writes are needed to  infect the sys- 
tem file and program files. This is why the system 
boot phase takes much less time. We were unable to 
get the same random generation rate that [LMS] got 
using truerand. We found that the Macintosh SE/30 
can only generate 1 random bit per clock tick (1/60th 
of a second), as opposed to 2 bits per tick. The random 
number generation is the bottleneck in terms of CPU 

= 11.92 sec 
= 47k bytes/sec 
= 15.7k bvtes/sec 

time, taking up 53.7% of the attack time. It takes a 
mere 4 ticks to encrypt the plaintext using RSA. 

TEA encryption routine 
truerand size 
misc. attack code ANSI C 
global data 560 

ANSI C 
entire attack routine I 6,382 1 ANSI C/Asm fl 

II main virus routine I 614 I Asm II 
U I 1 U 

[I total virus size I 6,996 I ANSI C/Asm 0 

It can be inferred from table 2 that the attacking 
routine could be made smaller if the entire routine were 
written in assembly language. One of the outcomes of 
our research was that we found that it is possible to  
write code for RSA, truerand, and TEA, such that the 
code does not exceed 7k bytes. Optimizing the code for 
size was a major challenge since most viruses are very 
small in size. The only limitations that were placed on 
our code is that it contains a public key with a small 
exponent built into i t ,  along with the inverse of the 
composite modulus. These optimizations allowed us 
to omit a multiprecision exponentiation routine and a 
division routine. This may have applications in other 
areas such as smart card technology. 

For space comparison, note that we used a modified 
GNU MP library which comprised only 4,372 bytes. 
The size of the object code for the GNU library that 
is required for full RSA encryption and decryption for 
the Macintosh is 14,818 bytes. Note that this object 
code corresponds to  source files that are entirely in 
ANSI C. Our virus has in-line assembly, miscellaneous 
optimizations, no exponentiation code, and no division 
code. This is what accounts for the big difference in 
size. The value of 14,818 does not include the C stan- 
dard library code (which is about 27k itself). 
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