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Abstract 

Onion Routing provides anonymous connections 
that are strongly resistant to both eavesdropping and 
trajgic analysis. Unmodified Internet applications can 
use these anonymous connections b y  means of prox- 
ies. The proxies may also make communication anony- 
mous b y  removing identifying information from the 
data stream. Onion routing has been implemented on 
Sun Solaris 2.X with proxies for Web browsing, remote 
logins, and e-mail. This paper’s contribution is a de- 
tailed specification of the implemented onion routing 
system, a vulnerability analysis based on this specifica- 
tion, and performance results. 

1 Introduction 

Private electronic communication is becoming an in- 
creasingly important public issue. Encryption can ef- 
fectively hide the content of a conversation from eaves- 
droppers, and this protection is being integrated into 
many systems. But, hiding the identities of communi- 
cating parties from eavesdroppers, or from each other, 
is usually not considered. 

Who is communicating with whom, however, may 
be sensitive too. E-mail users may wish to hide their 
addresses. Anonymous cash is not anonymous if the 
communications channel identifies the purchaser. The 
amount of information revealed through Web brows- 
ing should be deliberate. Inter-company collaboration 
may be confidential. Revealing identities in a cellular 
phone system reveals a user’s location, since the cellu- 

A purpose of traffic analysis is to  reveal who is talk- 
ing to whom. The anonymous connections described 
here are designed to  be resistant to  traffic analysis, i.e., 
to  make it difficult for observers to  learn identifying in- 

lar  phone network must track handsets’ locations. 
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formation from the connection (e.g., by reading packet 
headers, tracking encrypted payloads, etc.). Any iden- 
tifying information must be passed as data through 
the anonymous connections. Our implementation of 
anonymous connections, onion routing, provides pro- 
tection against eavesdropping as a side effect. Onion 
routing provides bidirectional and near real-time com- 
munication similar to  TCP/IP socket connections [6]. 
The anonymous connections can substitute for sockets 
in a wide variety of unmodified Internet applic-t’ a lOnS 
by means of proxies. The proxies may also remove 
identifying information from the data stream, to make 
communication anonymous too. 

Although onion routing may be used for anony- 
mous communication, it differs from anonymous re- 
mailers [7, 111 in two ways: Communication is real- 
time and bidirectional, and the anonymous connections 
are application independent. Onion routing’s anony- 
mous connections can support anonymous mail as well 
as other applications. For example, onion routing may 
be used for anonymous Web browsing. A user may 
wish to  browse public Web sites without revealing his 
identity to those Web sites. That requires removing 
information that identifies him from his requests to  
Web servers, and removing information from the con- 
nection itself that may identify him. Hence, anony- 
mous Web browsing uses anonymized communication 
over anonymous connections. The Anonymizer [l] only 
anonymizes the data stream, not the connection itself. 
So it does not prevent traffic analysis attacks like track- 
ing data as it moves through the network. 

A preliminary description of onion routing is found 
in [ lo ,  131. Those papers mainly present the goals of 
onion routing, and some of the basic structure of our 
solution. However, they do not give enough detail to  
properly evaluate the security of onion routing. The 
original content of this paper includes: a detailed spec- 
ification of the onion routing system; a description of 
implementation choices that were influenced by con- 
siderations not apparent at a more abstract level; a 
vulnerability analysis based on the specification; and 
performance results for our prototype. The specifi- 
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cation presented here is sufficient to  guide both re- 
implementations and new applications of onion rout- 
ing. 

This paper is organized in the following way. Sec- 
tion 2 presents an overview of onion routing. Section 
3 presents empirical data about our prototype. Sec- 
tion 4 defines our threat model. Section 5 describes 
onion routing and the application specific proxies in 
more detail. Section 6 describes the system’s vulner- 
abilities, and section 7 describes the implementation 
choices that were made for security reasons. Section 8 
presents related work, and section 9 presents conclud- 
ing remarks. 

2 Onion Routing Overview 

In onion routing, instead of making socket connec- 
tions directly to a responding machine, initiating ap- 
plications make connections through a sequence of ma- 
chines called onion routers. The onion routing network 
allows the connection between the initiaior and respon- 
der to  remain anonymous. We call this an anonymous 
socket connection or anonymous connection. Anony- 
mous connections hide who is connected to  whom, and 
for what purpose, from both outside eavesdroppers and 
compromised onion routers. If anonymity is also de- 
sired, then all identifying information must be removed 
from the data stream before being sent over the anony- 
mous connection. 

We call the onion routing network topology that we 
use in this paper the basic configuration. This is illus- 
trated in figure 1. 
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Figure 1. Routing Topology. 

In the basic configuration, an onion router sits on 
the firewall of a sensitive site. This onion router serves 

as an interface between machines behind the firewall 
and the external network. Connections from machines 
behind the firewall to the onion router are protected 
by other means (e.g., physical security). To complicate 
tracking of traffic originating or terminating within the 
sensitive site, this onion router should also route data 
between other onion routers. This is the basic topology 
that we will use for the rest of this paper. 

The use of anonymous connections by two sensitive 
sites that both control onion routers effectively hides 
their communication from outsiders. However, if the 
responder is not in a sensitive site (e.g., the responder 
is some arbitrary Web server) the data stream from 
the sensitive initiator must also be anonymixed. Oth- 
erwise, even rudimentary analysis of the unprotected 
communication between the last onion router in the 
anonymous connection and the responder may reveal 
the initiator’s identity. 

Onion routers in the network are connected by long- 
standing (permanent) socket connections. Anonymous 
connections through the network are multiplexed over 
the longstanding connections. For any anonymous con- 
nection, the sequence of onion routers in a route is 
strictly defined at connection setup. However, each 
onion router can only identify the previous and next 
hops along a route. Data passed along the anony- 
mous connection appears different at each onion router, 
so data cannot be tracked en route and compromised 
onion routers cannot cooperate by correlating the data 
stream each sees. 

The onion routing network is accessed via proxies. 
An initiating application makes a socket connection to 
an application specific proxy on some onion router. 
That proxy defines a route through the onion rout- 
ing network by constructing a layered data structure 
called an onion and sending that onion through the 
network. Each layer of the onion defines the next hop 
in a route. An onion router that receives an onion 
peels off its layer, identifies the next hop, and sends 
the embedded onion to  that onion router. After send- 
ing the onion, the initiator’s proxy sends data through 
the anonymous connection. 

The last onion router forwards data to  another type 
of proxy on the same machine, called the responder’s 
proxy, whose job is to  pass data between the onion 
network and the responder. An example onion rout- 
ing network and anonymous socket connection is also 
illustrated in figure 1. 

In addition to  carrying next hop information, each 
onion layer contains key seed material from which keys 
are generated for crypting’ data sent forward or back- 

‘We define the verb c r y p t  to mean the application of a cryp- 
tographic operation, be it encryption or decryption. 
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ward along the anonymous connection. (We define for- 
ward to  be the direction in which the onion travels and 
backward as the opposite direction.) 

Once the anonymous connection is established, it 
can carry data. Before sending data over an anony- 
mous connection, the initiator's onion router adds a 
layer of encryption for each onion router in the route. 
As data moves through the anonymous connection, 
each onion router removes one layer of encryption, so 
it arrives at the receiver as plaintext. This layering oc- 
curs in the reverse order for data moving back to the 
initiator. So data that has passed backward through 
the anonymous connection must be repeatedly post- 
crypted to obtain the plaintext. 

By layering cryptographic operations in this way, 
we gain an advantage over link encryption. As data 
moves through the network it appears different to each 
onion router. Therefore, an anonymous connection is 
as strong as its strongest link, and even one honest node 
is enough to maintain the privacy of the route. In link 
encrypted systems, compromised nodes can cooperate 
to  uncover route information. 

Although we call this system onion routing, the 
routing that occurs here does so at  the application 
layer of the protocol stack and not at the IP layer. 
More specifically, we rely upon IP routing to route data 
passed through longstanding socket connections. An 
anonymous connection is comprised of several linked 
longstanding socket connections. Therefore, although 
the series of onion routers in an anonymous connection 
is fixed for the lifetime of that anonymous connection, 
the route that data actually travels between individual 
onion routers is determined by the underlying IP net- 
work. Thus, onion routing may be compared to loose 
source routing. 

Onion routing depends upon connection based ser- 
vices that deliver data uncorrupted and in-order. This 
simplifies the specification of the system. TCP socket 
connections, which are layered on top of a connection- 
less service like IP, provide these guarantees. Similarly, 
onion routing could easily be layered on top of other 
connection based services, like ATM. 

Our current prototype of onion routing considers the 
network topology to  be static and does not have mecha- 
nisms to automatically distribute or update  public keys 
or network topology. These issues, though important, 
are not the key parts of onion routing and will be ad- 
dressed in a later prototype. 

3 Empirical Data 

We invite readers to experiment with our pro- 
totype of onion routing by using it to anony- 

mously surf the Web, send anonymous e-mail, and 
do remote logins. For instructions please see 
http://www.itd.nrl.navy.mil/ITD/5540/ 
pro j ect s/onion-rout ing. 

Be aware that accessing a remote onion router does 
not really preserve anonymity, because the connection 
between your machine and the first onion router is not 
protected. Even if that connection were protected, you 
have no reason to  trust the remote onion router. If you 
had a secured connection to  an onion router you trust, 
it could use our onion router as one of several inter- 
mediate routers to  further complicate traffic analysis. 
Remote use of our site provides no greater anonymity 
than is provided by the Anonymizer [l]. 

In our experimental onion routing network, five 
onion routers run on a single Sun UltraSparc 2270. 
This machine has two processors, and 256MB of mem- 
ory. Anonymous connections are routed through a ran- 
dom sequence of five onion routers.2 Connection setup 
time should be comparable to  a more distributed topol- 
ogy. Data latency, however, is more difficult to  judge. 
Clearly, data will travel faster over socket connections 
between onion routers on the same machine than over 
socket connections between different machines. How- 
ever, the removal or addition of layers of encryption is 
not pipelined, so data latency may be worse on a single 
machine. 

Onion routing's overhead is mainly due to public 
key cryptography and is incurred while setting up an 
anonymous connection. On an UltraSparc running a 
fast implementation of RSA [a], a single public key de- 
cryption of a 1024 bit plaintext block using a 1024 bit 
private key and a 1024 bit modulus takes 90 millisec- 
onds. Encryption is much faster, because the public 
keys are only 16 bits long. (This is why RSA signature 
verification is cheaper than signing). So, the public key 
cryptographic overhead for routes spanning five onion 
routers is just under 0.5 seconds. This overhead can 
be further reduced, either with specialized hardware, 
or even on PCs (a 200 Mhz Pentium would be twice as 
fast). 

Relatively large connection setup overhead may be 
tolerable in some applications. For example, socket 
connection setup may be slow anyway. If a connection 
is long lived, setup overhead may be reasonable. For 
example, in WWW requests, a single document may 
require several requests to the same host to retrieve 
different components of the same document. Although 
each individual request and response pair may be short, 
the combination of all request/response pairs may be 
lengthy. There is no reason that the same anonymous 

2Five onion routing hops per connection provides reasonable 
security at reasonable cost. See section 6. 
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connection could not be used to carry the traffic for 
each of the real socket connections, either sequentially 
or multiplexed. In fact, the preliminary specification 
for HTTP 1.1 defines pipelined connections to  amor- 
tize the cost of socket setup, and pipelined connections 
would also transparently amortize the increased cost of 
anonymous connection setup. Our Web proxy will be 
made HTTP 1.1 compliant when HTTP 1.1 is adopted. 

4 Threat Model 

We assume that the network is subject to both pas- 
sive and active eavesdropping. That is: 

0 All traffic is visible. 

0 All traffic can be modified. 

0 Onion routers may be compromised. 

0 Compromised onion routers may cooperate. 

In addition, a sophisticated adversary may be able 
to  detect timing coincidences such as the near simul- 
taneous opening of connections. Timing coincidences 
are very difficult to overcome without wasting network 
capacity, especially when real-time communication is 
important. 

The initiator’s proxy and the first onion router are 
the most trusted elements of the onion routing system. 
That is one reason why, in our basic configuration, both 
the proxy and onion router are placed under the control 
of the sensitive site. 

This threat model directly motivates certain design 
decisions in onion routing. Because traffic is visible, 
the headers and payload of all traffic are essentially 
link encrypted between onion routers so the same data 
looks different when traveling between onion routers. 
Because traffic can be modified, stream ciphers [14] 
are used for encryption. Inserting, deleting, modify- 
ing, or replaying traffic anywhere en route will disrupt 
the stream and will result in persistent unrecogniz- 
able changes downstream; thus, data cannot be tracked 
moving through the system. However, the plaintext 
will be unreadable by the responder, causing a denial- 
of-service attack. Because onion routers may be com- 
promised, anonymous connections span several onion 
routers. Because compromised onion routers may co- 
operate, data is encrypted in a layered fashion so it ap- 
pears different to  each onion router, not only between 
onion routers. 

In general, our design chooses denial-of-service over 
the compromise of private information. For example, 
we assume that data moves through sockets in order 

and uncorrupted. A compromised onion router can 
easily violate this assumption; however, the result is 
unpredictable and unreadable data emerging from the 
system rather than the direct release of any informa- 
tion. Since replay of an onion will cause the same 
embedded onions to  appear downstream, onion replay 
may reveal connection information. However, onions 
themselves cannot be replayed through an honest node. 
Onion routers remember onions they have passed by 
storing a hash of previously passed onions. If a replay is 
detected, the onion is simply dropped. To control stor- 
age requirements, onions are equipped with expiration 
times. Here too, denial-of-service supersedes compro- 
mise. If clocks are far enough out of synchronization 
one way, the only possible result is for a fresh onion 
to be viewed as expired and ignored. If they are far 
enough out of synchronization the other way, the only 
possible result is for a passed onion to  be stored beyond 
its expiration. 

5 Onion Routing 

5.1 Onion Routing Proxies 

A proxy is a transparent service between two appli- 
cations that would usually make a direct socket con- 
nection to each other but cannot. For example, a fire- 
wall might prevent direct socket connections between 
internal and external machines. A proxy running on 
the firewall may enable such connections. Proxy aware 
applications are becoming quite common. 

Our goal has been to  design an architecture for pri- 
vate communication that would interface with unmodi- 
f ied  applications, so we chose to use proxies as the inter- 
face between applications and onion routing’s anony- 
mous connections. For applications that are designed 
to  be proxy aware, (e.g., WWW browsers), we sim- 
ply design appropriate interface proxies. Surprisingly, 
for certain applications that are not proxy aware (e.g., 
RLOGIN), we have also been able to  design interface 
proxies. In this paper, we will focus on the HTTP 
proxy for Web browsing. 

In the basic configuration where a firewall lives be- 
tween a trusted and untrusted network, the onion 
router and its proxies live on the firewall. There are 
two classes of proxies: one that bridges connections 
from initiating applications into the onion routing net- 
work (the application proxy), and another that com- 
pletes the connection from the onion routing network 
to  responders (the responder proxy). 

Because the  application proxy bridges between ap- 
plications and the onion routing network, it must un- 
derstand both application protocols and onion rout- 
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ing protocols. Therefore, to simplify the design of ap- 
plication specific proxies, we partition the proxy into 
two components: the client proxy and the core proxy.  
The client proxy bridges between a socket connection 
from an application and a socket connection to  the core 
proxy. It is the obligation of the client proxy to  massage 
the data stream so both the core proxy and the respon- 
der proxy can be application independent. Specifically, 
the client proxy must prepend to  the data stream a 
standard structure that identifies the ultimate destina- 
tion by either hostname/port or IP  address/port. Ad- 
ditionally, it must process a one byte return code from 
the responder proxy and either continue if no error is 
reported or report the onion routing error code in some 
application specific meaningful way. 

Upon receiving a new request, the core proxy uses 
the prepended standard structure as a hint in build- 
ing an onion defining the route of an anonymous con- 
nection to  that destination. It then passes the onion 
to  the onion routing network building the anonymous 
connection to  the responder proxy, and then passes the 
prepended standard structure to  the responder proxy 
specifying the ultimate destination. From this point 
on, the core proxy blindly relays data back and forth 
between the client proxy and the onion routing network 
(and thus the responder proxy at  the other end of the 
anonymous connection). 

For the services we have considered to  date, a nearly 
generic responder proxy is adequate. Its function is 
to read the data stream from the terminating onion 
router. The first datum received will be the stan- 
dard structure specifying the ultimate destination. The 
responder proxy makes a socket connection to  that 
IP/port, reports a one byte status message back to  the 
onion routing network (and thus back to  the core proxy 
which in turn forwards it back to  the client proxy), 
and subsequently moves data between the onion rout- 
ing network and the new socket. (For certain services, 
like RLOGIN, the responder proxy also infers that the 
new socket must originate from a trusted port.) 

As an example, consider the client proxy for HTTP. 
The user configures his browser to  use the onion rout- 
ing proxy. His browser may send the proxy a re- 
quests like GET http: //www .domino. com/showcase/ 
HTTP/i, 0 followed by optional fields. 

The client proxy is listening for new requests. Once 
it obtains the GET request, it creates the standard 
structure and sends it (along a new socket connec- 
tion) to  the core proxy, to  inform the core proxy of the 
service and destination of the anonymous connection. 
The client proxy then modifies the GET request t o  GET 
/showcase/ HTTP/I .O and sends it directly (through 
the anonymous connection) to the HTTP server, fol- 

lowed by the optional fields. Notice that the server 
name and http: // are eliminated because the connec- 
tion is made directly to  the HTTP server. 

The client proxy essentially makes a connection to  
nnn.domino.com, and issues a request as if it were a 
client. Once this request is transmitted to  the server, 
all proxies blindly forward data in both directions be- 
tween the client and the server until the socket is bro- 
ken by either side. 

For the anonymizing onion routing HTTP proxy, 
the client proxy proceeds as outlined above with one 
change: it is now necessary to sanitize the optional 
fields that follow the GET command because they may 
contain identity information. Furthermore, the data 
stream during a connection must be monitored, to san- 
itize additional headers that might occur during the 
connection. For our anonymizing HTTP proxy, opera- 
tions that store cookies on the user’s browser (to track 
a user, for example) are removed. This reduces func- 
tion, so applications that depend upon cookies (like 
online shopping baskets) may not work properly. 

The core proxy’s function is to  pass data between 
multiple socket connections from client proxies and the 
first onion router. Therefore, the core proxy is not ap- 
plication specific but must understand the onion rout- 
ing protocol, which defines how multiplexed connec- 
tions are handled. The core proxy must repeatedly 
pre-crypt the data stream before passing it along the 
onion routing network. The repeated pre-cryptions are 
the inverses of the cryptographic functions that will be 
applied by the onion routers as the data moves along 
the anonymous connection. Similarly, the core proxy 
must repeatedly post-crypt data from the anonymous 
connection with the inverses of the cryptographic func- 
tions that were applied by the onion routers, before 
passing the plaintext to the client proxy. 

5.2 Implementation 

This section presents the interface specification be- 
tween the components in an onion routing system. To 
provide some structure to  this specification, we will 
discuss components in the order that data would move 
from an initiating client to a responding server. 

There are four phases in an onion routing sys- 
tem: network setup, which establishes the longstanding 
connections between onion routers; connection setup, 
which establishes anonymous connections through the 
onion router network; data movement over a anony- 
mous connection; and the destruction and cleanup of 
anonymous connections. We will commingle the dis- 
cussion of these below. 
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5.3 Client Proxy 

The interface between an application and the client 
proxy is application specific. The interface between the 
client proxy and the core proxy is defined as follows. 
For each new proxy request, the client proxy first deter- 
mines if it will handle or deny the request. If rejected, it 
reports an application specific error message and then 
closes the socket and waits for the next request. If 
accepted, it creates a socket to the core proxy’s well 
known port. The client proxy then sends a standard 
structure to  the core proxy of the form: 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
t-+-+-+-t-+-+-t-+-+-+-t-+-+-+-+-+-+-+-+-+-t-+-+-t-+-+-+-+-+-t-+-t 

I Version I Protocol I Retry Count I Addr Format I 
+-t-t-t-+-+-+-+-+-+-+-+-+-+-+-+-t-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

Version is currently defined to be 1. Protocol is 
either 1 for RLOGIN, 2 for HTTP, or 3 for SMTP. 
Retry Count specifies how many times the responder 
proxy should attempt to  retry connecting to  the ulti- 
mate destination. Finally, the Addr Format field spec- 
ifies the form of the ultimate destination address: 1 
for a NULL terminated ASCII string with the host- 
name immediately followed by another NULL termi- 
nated ASCII string with the destination port number, 
or a 2 for sockaddr-in data structure specifying both 
the internet address and the destination port. The ul- 
timate destination address is sent after this standard 
structure, and the client proxy waits for a one byte 
error code before sending data. 

5.4 Core Proxy 

Upon receiving the standard structure, the core 
proxy can decide whether to  accept or reject the re- 
quest based on the protocol, anonymity, destination 
host, destination port, or the identity of the client 
proxy. If rejected, it sends an appropriate error code 
back to the client proxy, closes the socket, and waits for 
the next request. If accepted, it proceeds to  build the 
anonymous connection to  the responder proxy using 
the standard structure, sends the standard structure 
to the responder proxy over the anonymous connec- 
tion, and then passes all future data to  and from the 
client proxy and anonymous connection. The repeated 
pre and post cryptions and packaging of the data is 
discussed later in section 5.6. 

5.5 Onions 

To build the anonymous connection to the respon- 
der proxy, the core proxy creates an onion. An onion 

is a multi-layered data structure that encapsulates the 
route of the anonymous connection starting from the 
responder proxy and working backward to the core 
proxy. 

Each layer has the following structure: 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 ~ 2 3 4 6 6 7 8 9 0 1  
+-+-+-t-+-t-t-+-+-+-t-+-+-+-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-t-+ 

I01 Version IBack FlForp FI Destination Port I 

I Destination Address I 

I Expiration Time (GNT) I 

I I 

I I 
t Key Seed Naterial + 
I I 

I I 

+-t-+-+-+-+-t-+-t-+-+-t-+-t-t-t-t-+-+-+-+-+-t-+-+-+-+-+-t-+-+-t-+ 

t-t-t-t-t-+-+-+-+-+-+-t-t-+-+-t-+-+-t-t-t-+-t-t-t-t-+-t-t-t-+-+-+ 

t-+-t-+-t-t-t-+-t-t-+-+-+-+-+-t-+-+-+-+-+-+-+-t-t-+-+-t-+-t-t-+-t 

+ + 

t + 

+-+-+-t-+-t-t-t-t-t-t-t-t-t-t-t-t-t-+-+-+-+-+-t-t-+-t-+-t-t-t-t-t 

As we will see below, the first bit must be zero for 
RSA public key cryptography to  succeed. Following 
the zero bit is the Version Number of the onion routing 
system, currently defined to be 1. 

The Back F field denotes the cryptographic function 
to  be applied to data moving in the backward direc- 
tion (defined as data moving in the opposite direction 
that the onion traveled, usually toward the initiator’s 
end of the anonymous socket connection) using key:! 
defined below. The Forw F field denotes the crypto- 
graphic function to be applied to  data moving in the 
forward direction (defined as data moving in the same 
direction that the onion traveled, usually toward the 
responder’s end of the anonymous socket connection) 
using key3 defined below. Currently defined crypto- 
graphic functions are: 0 for Identity (no encryption), 1 
for DES OFB (output feedback mode) (56 bit key), and 
2 for RC4 (128 bit key). The Destination Address and 
Destination Port indicate the next onion routser in net- 
work order and are both 0 for the responder proxy. The 
Expiration Time is given in network order in seconds 
relative to  0O:OO:OO UTC January 1, 1970 (i.e. stan- 
dard UNIX time(2) format) and specifies how long the 
onion router at this hop in the anonymous connection 
must track the onion against replays before it expires. 
Key Seed Material is 128 bits long and is hashed three 
times with SHA to produce three cryptographic keys 
(key l ,  k e y z ,  and key3) of 128-bits each (the first eight 
bytes of each SHA output are used for DES and the 
first 16 bytes for RC4 keys).3 

Since we use RSA public key cryptography with a 
modulus size of 1024-bits, the plaintext block size is 
1024 bits and must be strictly less than the modulus 

3Details on the cryptographic operations used in this paper 
can be found in [14]. 
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numerically. To avoid problems, we force this relation 
by putting the most-significant bit first and setting it 
to  0 (the leading 0 above). Furthermore, the inner- 
most layer of the onion is padded on the end with an 
additional 100 bytes prior to RSA encryption being 
performed. 

In version 1, an onion has five layers. An onion 
is formed iteratively, innermost layer first. At each 
iteration, the first 128 bytes of the onion are encrypted 
with the public key of the onion router that is intended 
to  decrypt that layer. The remainder of the onion is 
encrypted, using DES OFB with an IV (initialization 
vector) of 0 and key1 (derived from K e y  Seed Material 
in that layer as defined a b ~ v e ) . ~  

Before discussing how onions and data are sent be- 
tween onion routers, we will define onion router inter- 
connection. 

5.6 Onion Router Interconnection 

During onion network setup (not to be confused 
with anonymous connection setup), longstanding con- 
nections between neighboring onion routers are estab- 
lished and keyed. The network topology is predefined 
and each onion router knows its neighbors and the RSA 
public keys of all nodes in the network. 

To remain connected to each of its neighbors, onion 
routers must both listen for connections from neigh- 
bors and attempt to initiate connections to neighbors. 
To avoid deadlock and collision issues between pairs 
of neighbors, an onion router listens for connections 
from neighbors with “higher” IP/port addresses and 
initiates connections to neighbors with “lower” IP/port 
addresses. “Higher” and “Lower” are defined with re- 
spect to network byte ordering. 

The protocol has two phases: connection setup and 
keying. The initiating onion router opens a socket to  
a well known port of its neighboring onion router, and 
sends its IP  address and well known port (the port is 
included to  allow multiple onion routers to run on a 
single machine) in network order to identify itself. The 
keying phase ensues, using STS [8] which will gener- 
ate two DES 56-bit keys. The link encryption over the 
longstanding connections is done by DES OFB with 
IVs of 0 and these two keys (one for data in each di- 
rection). 

Once keyed, communication between onion routers 
is packaged into fixed sized cells, which allows for the 
multiplexing of both anonymous connections and con- 
trol information over the longstanding connections. In 

We use DES to encrypt the onion, and for link encryption 
between onion routers, because it has no licensing fees and can be 
used as a pseudorandom number generator. We would be happy 
to use a stronger pseudorandom number generator, however. 

version 1 of the onion routing system, there are four 
types of cells: PADDING (0), CREATE (l), DATA 
(a), and DESTROY (3) .  

Cells have the following structure: 

0 1 2 3 
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
t-+-+-+-+-t-+-t-+-+-+-t-+-+-+-+-t-t-+-+-+-+-+-+-t-+-+-+-+-t-t-+-+ 
I ACI I Command I Length I 
+-t-+-+-+-t-t-+-+-+-t-t-t-t-+-t-t-t-t-+-+-+-+-t-t-t-t-+-+-+-t-t-+ 

....................... Payload (44 bytes) ....................... 

+-+-+-+-+-t-+-+-+-+-+-t-t-+-+-+-+-t-+-+-+-+-t-+-t-t-+-+-+-t-t-t-+ 

I I 

I I 

The ACI (anonymous connection identifier) and 
Command fields are always encrypted using the link 
encryption between neighboring nodes. Additionally, 
the Length and Payload fields are encrypted using the 
link encryption between neighboring nodes if the com- 
mand is either PADDING (0) or DESTROY (3). For 
CREATE (1) commands, the length is link encrypted, 
but the payload is already encrypted because it car- 
ries the onion. For DATA (2) commands, the length 
and entire payload are encrypted using the anonymous 
connection’s forward or backward cryptographic oper- 
ations. 

Each anonymous connection is assigned an ACI at  
each onion router, which labels an anonymous connec- 
tion when it is multiplexed over the longstanding con- 
nection to  the next onion router. ACIs must be unique 
on their longstanding connection but need not be glob- 
ally unique. To move an onion through the system, 
an onion router peels off the outermost layer, identify- 
ing the next hop. It checks the freshness (not expired 
and not replayed) of the onion, computes the neces- 
sary cryptographic keys, seeds the forward and back- 
ward cryptographic engines, chooses a new ACI for the 
next hop in the new connection, and then builds a data 
structure associated with that connection which maps 
incoming to  outgoing ACIs and the cryptographic en- 
gines associated with forward and backward data. 

The rest of the onion is padded randomly to  its orig- 
inal length, placed into CREATE cells, and then sent 
out in order to  the appropriate neighbor. The payload 
of the last cell is padded with random bits to  fill the 
cell if necessary (to avoid traceability). 

Data moves through an anonymous connection in 
DATA cells. At each onion router, except for the ini- 
tiator’s, both the length and payload fields of a cell are 
crypted using the appropriate cryptographic engine. 
The new cell is sent out to  the appropriate neighbor. 
The initiator’s onion router must repeatedly crypt data 
to either add the appropriate layers of cryption on out- 
going data, or remove layers of cryption from incoming 
data. When constructing a DATA cell from a plaintext 
data stream, the cell is (partially) filled, its true length 
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is set, and all 45 bytes of the length and payload fields 
are repeatedly crypted using the stream ciphers defined 
by the onion. Therefore, when the cell arrives at the 
responder proxy, the length field reflects the length of 
the actual data carried in the payload. 

If a connection is broken, a DESTROY command 
is sent to  clean up state information. The ACI field 
of the DESTROY command carries the ACI of the 
broken connection. The length and payload must be 
random. Upon receipt of a DESTROY command, it 
is the responsibility of an onion router to forward the 
DESTROY appropriately and to acknowledge receipt 
by sending another DESTROY command back to  the 
previous sender. After sending a DESTROY command 
about a particular ACI, an onion router may not send 
any more cells along that anonymous connection. Once 
an acknowledgment DESTROY message is received, an 
onion routing node considers the anonymous connec- 
tion destroyed and the ACI can be used as a label for 
a new anonymous connection. 

The PADDING command is used to  inject data into 
a longstanding socket to  further confuse traffic analysis. 
PADDING cells are discarded upon receipt. 

Each onion router also reorders cells moving through 
i t ,  according to a scheme that we call layered reordering 
(see section 6) that both preserves the order of cells in 
each anonymous connection and caps how long cells 
may be delayed by an onion router. 

5.7 Responder Proxy 

When a routing node receives an onion with Desti- 
nation Address and Destination Port of 0 ,  it knows it 
is to  act as a responder proxy. It proceeds to read the 
standard structure that will be the first data across the 
anonymous socket connection, establishes a connection 
to  the ultimate destination as indicated, and returns 
the status code. After this, it will blindly forward data 
between the anonymous connection and the connection 
to the responder’s machine. 

6 Vulnerabilities 

Onion routing is not invulnerable to  traffic analysis 
attacks. We now define an attack approach based on 
several simplifying assumptions. We characterize the 
complexity of an attack based on these assumptions, 
and note that real attacks will be more expensive. We 
also note that any scheme resistant to  traffic analysis 
cannot increase the space of potential recipients of a 
message to more than the number of possible recipients 
on the network. So, expecting the complexity of traffic 
analysis to  be similar to the cost of brute force attack 

on cryptographic algorithms (e.g., 256)  is unreasonable. 
Furthermore, the cost of traffic analysis searches may 
be higher, since a network must be monitored. 

Assume that each onion router has connections to  
eight (a3) other onion routers, and that each onion 
router has a secured connection to  a sensitive site. As- 
sume that all anonymous connections pass through five 
onion routers. Assume furthermore that since all cells 
moving through an onion routing network are of fixed 
length (48 bytes) it is possible to identify when cells 
begin and end. So we reduce the problem to track- 
ing markers, where markers indicate the beginning of a 
cell. Assume further, that an attacker can start mon- 
itoring the system when an onion router’s incoming 
queues and outgoing queues are empty, so the attacker 
can determine the order in which markers arrive at  an 
onion router. 

Under these assumptions, tracking markers through 
the network depends on the reordering done at each 
onion router. If no reordering is done (i.e., cells move 
from incoming to  outgoing queues using a FIFO strat- 
egy), then it appears easy to track markers. The first 
marker to  reach on onion router will be the first to 
leave, and its route through the network can be fol- 
lowed. But analysis is not that simple. Since each 
onion router is both an onion routing proxy and an in- 
termediate onion router, a new marker may enter the 
network at  any time, and it is impossible for an ob- 
server to  determine whether the new marker arrived 
before or after the first marker on the incoming queues 
(since a sensitive site’s connection to  its onion router 
is protected). If the onion routing proxy is busy, the 
marker could end up on one of two outgoing queues. (If 
the onion routing proxy is not busy, only one outgoing 
queue will be active.) Under the most complicating 
conditions, a marker could ultimately end up in one of 
25 outgoing queues. 

To further complicate traffic analysis, onion routers 
reorder incoming markers, so data does not move 
through the network in a simple FIFO manner. The 
optimal goal would be to make it equally likely that an 
incoming marker is output on any of an onion router’s 
8 outgoing queues. In that case, a single marker could 
end up at one of (23)5 outgoing queues. Notice that 
we cannot improve on this number, since it defines all 
possible reachable  queue^.^ 

Since onion routing is meant for real-time communi- 
cation, we use a limited amount of reordering. At any 

5This does not imply that one can only reach 215 sites via 
onion routing. Since the responder’s proxy can make connec- 
tions to any Internet site, one can anonymously browse any Web 
site. If the goal is to have anonymous connections between two 
sensitive sites, then any one site can communicate with at most 
212 other sensitive sites. 
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point in time, markers on several incoming queues may 
be considered to  arrive at the same time. These mark- 
ers may be moved to  outgoing queues in any arbitrary 
order that both maintains fairness of data movement 
for every anonymous connection and preserves the or- 
der of data on each anonymous connection. 

We define n-layered reordering as moving the first 
n markers on each incoming queue to outgoing queues 
in any arbitrary order subject to  the order preserv- 
ing restriction just described. If an incoming queue 
has fewer than n markers, all markers on the queue 
are moved. (In 1-layer reordering, the order preserving 
restriction is trivially satisfied.) Notice that although 
markers may be delayed at  any particular onion router, 
on average data latency is not hurt since markers are 
equally likely to  be forwarded early. 

Using layered reordering, traffic analysis becomes 
more complicated, since a marker could end up on one 
of several output queues. However, imagine that we 
know that two markers belong to the same anonymous 
connection. So, if we know which outgoing queues are 
possible for each of the markers, the intersection of 
those sets defines which queues are possible for the next 
hop in the anonymous connection. The goal, therefore, 
is to choose a layered reordering depth that makes it 
very likely that all possible outgoing queues will be 
present in each set most of the time. 

Since data latency is not hurt by layered reorder- 
ing it is possible to  predict the window during which a 
marker is likely to  exit the onion routing network. This 
invites another kind of traffic analysk6 It should be 
possible to identify the near simultaneous opening of 
endpoint connections. More specifically, if an attacker 
wishes to confirm that two parties are communicating 
frequently, if they happen to  have many more simulta- 
neous connection openings than is expected by chance, 
they are probably communicating. This attack, how- 
ever, is not possible if the onion routing basic config- 
uration is only used for communication between sites 
that control onion routing proxies, since the connection 
between the site and its onion router is assumed to  be 
protected. But, the basic configuration is not appro- 
priate everywhere, so this attack may persist in certain 
scenarios. 

7 Implementation Vulnerabilities 

An implementation of a secure design can be inse- 
cure. In this section, we describe several implementa- 
tion decisions that were made for security considera- 
tions. 

6Thanks to John Kelsey for helpful comments on this point. 

Onions are packaged in a sequence of cells that must 
be processed together. This onion processing involves a 
public key decryption operation which is relatively ex- 
pensive. Therefore, it is possible to  imagine an imple- 
mentation that clears outgoing queues while an onion 
is being processed, and then outputs the onion. There- 
fore, any period of inactivity on the out-bound queues 
is likely to  be followed by a sequence of onion cells be- 
ing output on a single queue. Such an implementation 
makes tracking easier and should be avoided. 

After processing at  each onion router, onions are 
padded at  the end to compensate for the removed layer. 
This padding must be random, since onions are not 
link encrypted between onion routers. Similarly, the 
length and payload of a DESTROY command must be 
new random content at  each onion router; otherwise, 
compromised onion routers could track that payload. 

In a multi-threaded implementation, there is a sig- 
nificant lure to  rely upon the apparent scheduling ran- 
domness to reorder events. If reordering is important 
to the secure operation of the system, deliberate re- 
ordering is crucial, since low level system randomness 
may in fact be predictable. 

There are two vulnerabilities that we do not yet 
know how to address. If part of the onion routing net- 
work is taken down, traffic analysis is greatly simplified. 
Also, if a longstanding connection between two onion 
routers is broken, it will result in many DESTROY 
messages, one for each anonymous connection that was 
routed through that longstanding connection. There- 
fore, a compromised onion router may infer from near 
simultaneous DESTROY messages that the associated 
anonymous connections had some common route. De- 
laying DESTROY messages hurts performance, since 
we require that a DESTROY message propagate to  the 
endpoints to take down the connection that is visible 
to the user. Carrying the DESTROY message through 
the anonymous connection and garbage collecting dor- 
mant anonymous connections later would be ideal, but 
we do not know how to efficiently insert control infor- 
mation into a raw data channel, especially considering 
our layered e n ~ r y p t i o n . ~  

8 Related Work 

Chaum [3] defines a layered object that routes data  
through intermediate nodes, called mixes. These in- 

70ne could imagine sending control information by insert- 
ing some random cell into the data stream. The application or 
its proxy could detect corrupted data, and terminate at  the ap- 
plication level, without destroying the anonymous connection. 
However, this is risky for two reasons: it may not always be pos- 
sible to detect corrupted data, and a random inserted cell may 
appear uncorrupted. 
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termediate nodes may reorder, delay, and pad traffic 
to  complicate traffic analysis. Our onion routers are 

throughout the Internet, which improves hiding. 

based on mixes. Some work has been done using mixes 
in ATM networks [5]. 

9 ~ ~ ~ ~ l ~ ~ i ~ ~  

Anonymous Remailers like [7, 111 use mixes to pro- 
vide anonymous e-mail services. Some invent an ad- 
dress through which mail can be forwarded back to the 
original sender. Remailers work in a store and forward 
manner at the mail application layer, by stripping off 
headers at each mix and forwarding the mail message 
to the next mix. Some remailers provide confirmation 
of delivery. 

In [9], a structure similar to an onion is used to 
forward individual IP  packets through a network. By 
maintaining tracking information at  each router, ICMP 
error messages can be moved back along the hidden 
route. Essentially, a connection is built for each packet 
in a connectionless service. 

In [12], mixes are used to  provide untraceable com- 
munication in an ISDN network. As described there, in 
an ISDN system, each ISDN line is assigned to  a partic- 
ular local switch (i.e., local exchange), and switches are 
interconnected by a (long distance) network. Anony- 
mous calls in ISDN rely upon an anonymous connec- 
tion within each switch between the caller and the long 
distance network, which is obtained by routing calls 
through a predefined series of mixes. The long distance 
endpoints of the connection are then mated to complete 
the call. (Notice that observers can tell which local 
switches are connected.) This approach relies upon two 
unique features of ISDN switches as described in [la]. 
Since each ISDN line has a subset of the switch’s total 
capacity pre-allocated to  i t ,  there is no (real) cost as- 
sociated with keeping an ISDN line active all the time, 
either by making calls to itself, to other ISDN lines 
on the same switch, or to the long distance network. 
Keeping ISDN lines active complicates traffic analysis 
because an observer cannot track coincidences. 

Since each ISDN line has a control circuit connec- 
tion to the switch, the switch can broadcast messages 
to  each line using these control circuits. So, within 
a switch a truly anonymous connection can be estab- 
lished: An ISDN line makes an anonymous connection 
to  some mix. That mix broadcasts a token identify- 
ing itself and the connection. A recipient of that token 
can make another anonymous connection to the speci- 
fied mix, which mates the two connections to  complete 
the circuit. In anonymous ISDN, the mixes hide com- 
munication within the local switch, but connections 
between switches are not hidden. This implies that 
all calls between two businesses, each large enough to 
use an entire switch, would reveal which businesses are 
communicating. In onion routing, mixing is dispersed 

Anonymous socket connections provide protection 
against both eavesdropping and traffic analysis. Al- 
though our focus is on anonymous connections, and 
not anonymous communication, anonymous communi- 
cation is also possible by removing identifying informa- 
tion from the data stream. Onion routing’s anonymous 
connections are application independent and can inter- 
face with unmodified Internet applications by means of 
proxies. Our implementation of onion routing includes 
proxies for Web browsing, e-mail, and remote login. 
We have also implemented anonymizing versions of the 
Web and e-mail proxies. 

It is instructive to compare onion routing’s anony- 
mous e-mail service with other anonymous remailers. 
All services remove identifying headers. Most remail- 
ers work in a store and forward manner, either between 
mixes or simply sendmail daemons. Onion routing’s 
service, however, makes an anonymous connection di- 
rectly to  the recipient’s sendmail daemon. This has 
both advantages and disadvantages. The disadvantage 
is that mixing is not done as well, since the connection 
is made in real time. The advantage is that the anony- 
mous connection is separated from the application, so 
anonymous e-mail systems are considerably simplified 
because the application specific part does not have to 
move data through the network. Furthermore, because 
the onion routing network can carry many types of 
data, it has the potential to  be more heavily utilized 
than a network that is devoted only to e-mail. Heavy 
utilization is the key to  anonymity. 

Anonymous remailers typically provide a mechanism 
to reply to anonymous e-mail. A remailer may assign 
pseudonyms through which mail is forwarded. These 
pseudonyms must be stored at  the remailer in order to  
properly process replies. In onion routing, it is possi- 
ble for a sender to build a reply  onion that defines an 
anonymous connection to  him. This reply onion can 
be included in mail messages. When a response is sent 
to the appropriate proxy on an onion router, the re- 
ply onion is first processed to  create the anonymous 
connection back to  the sender. The reply is then sent 
over that anonymous connection. Notice that the re- 
ply onion is equivalent to a pseudonym, except that 
it is not stored at any onion router. So onion routers 
are stateless remailers. To identify users of anonymous 
onion routed e-mail, reply onions must first be obtained 
and all relevant onion routers must be compromised. 

Anonymous connections may be used as a new prim- 
itive that enables novel applications in addition to  fa- 
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cilitating secure versions of existing services. For ex- 
ample, in a cellular phone system, the location of hand- 
sets must be tracked, even when the phone is waiting 
for a call (in standby mode). This is because the cellu- 
lar network must know through which base station to 
route calls. However, it may be undesirable to  let the 
cellular network know the location of its subscribers. 
An alternative architecture that protects such location 
information, may be constructed using anonymous con- 
nections. To make a call, the phone constructs an onion 
which defines a route through the local base station 
to some billing station. The phone identifies the sub- 
scriber to the billing station (for billing purposes) but 
does not have to reveal its location. The billing sta- 
tion completes the call. To receive a call, the handset 
is paged over a large area. This paging turns on the 
handset, which then makes a call to the paged num- 
ber (through an anonyrnous connection as described 
above). As an aside, the paging approach to receiv- 
ing a call significantly conserves battery use, since the 
phone is off unless it is involved in a call. 

Alternatives to  the basic configuration exist which 
move trust closer to the user. For example, an Inter- 
net Services Provider (ISP) could run an onion router 
that accepts onions from its subscribers. Subscribers 
would generate these onions on their trusted local ma- 
chines. The ISP would not know with whom the cus- 
tomer is communicating. And the subscriber need not 
fully trust the ISP to maintain his privacy. 
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