
Anonymous Connections and Onion Routing

Paul F. Syverson, David M. Goldschlag, and Michael G. Reed *
Naval Research Laboratory

Abstract

Onion Routing provides anonymous connections
that are strongly resistant to both eavesdropping and
trajgic analysis. Unmodified Internet applications can
use these anonymous connections b y means of prox-
ies. The proxies may also make communication anony-
mous b y removing identifying information from the
data stream. Onion routing has been implemented on
Sun Solaris 2.X with proxies for Web browsing, remote
logins, and e-mail. This paper’s contribution is a de-
tailed specification of the implemented onion routing
system, a vulnerability analysis based on this specifica-
tion, and performance results.

1 Introduction

Private electronic communication is becoming an in-
creasingly important public issue. Encryption can ef-
fectively hide the content of a conversation from eaves-
droppers, and this protection is being integrated into
many systems. But, hiding the identities of communi-
cating parties from eavesdroppers, or from each other,
is usually not considered.

Who is communicating with whom, however, may
be sensitive too. E-mail users may wish to hide their
addresses. Anonymous cash is not anonymous if the
communications channel identifies the purchaser. The
amount of information revealed through Web brows-
ing should be deliberate. Inter-company collaboration
may be confidential. Revealing identities in a cellular
phone system reveals a user’s location, since the cellu-

A purpose of traffic analysis is to reveal who is talk-
ing to whom. The anonymous connections described
here are designed to be resistant to traffic analysis, i.e.,
to make it difficult for observers to learn identifying in-

lar phone network must track handsets’ locations.

*Address: Naval Research Laboratory, Center For High As-
surance Computer Systems, Washington, D.C. 20375-5337, USA,
phone: +1 202.767.2389, fax: +1 202.404.7942, e-mail: { las t
n a m e} Qi t d .nrl .nav y.mil .

formation from the connection (e.g., by reading packet
headers, tracking encrypted payloads, etc.). Any iden-
tifying information must be passed as data through
the anonymous connections. Our implementation of
anonymous connections, onion routing, provides pro-
tection against eavesdropping as a side effect. Onion
routing provides bidirectional and near real-time com-
munication similar to TCP/IP socket connections [6].
The anonymous connections can substitute for sockets
in a wide variety of unmodified Internet applic-t’ a lOnS
by means of proxies. The proxies may also remove
identifying information from the data stream, to make
communication anonymous too.

Although onion routing may be used for anony-
mous communication, it differs from anonymous re-
mailers [7, 111 in two ways: Communication is real-
time and bidirectional, and the anonymous connections
are application independent. Onion routing’s anony-
mous connections can support anonymous mail as well
as other applications. For example, onion routing may
be used for anonymous Web browsing. A user may
wish to browse public Web sites without revealing his
identity to those Web sites. That requires removing
information that identifies him from his requests to
Web servers, and removing information from the con-
nection itself that may identify him. Hence, anony-
mous Web browsing uses anonymized communication
over anonymous connections. The Anonymizer [l] only
anonymizes the data stream, not the connection itself.
So it does not prevent traffic analysis attacks like track-
ing data as it moves through the network.

A preliminary description of onion routing is found
in [lo , 131. Those papers mainly present the goals of
onion routing, and some of the basic structure of our
solution. However, they do not give enough detail to
properly evaluate the security of onion routing. The
original content of this paper includes: a detailed spec-
ification of the onion routing system; a description of
implementation choices that were influenced by con-
siderations not apparent at a more abstract level; a
vulnerability analysis based on the specification; and
performance results for our prototype. The specifi-

44
U.S. Government Work Not Protected by U.S. Copyright

cation presented here is sufficient to guide both re-
implementations and new applications of onion rout-
ing.

This paper is organized in the following way. Sec-
tion 2 presents an overview of onion routing. Section
3 presents empirical data about our prototype. Sec-
tion 4 defines our threat model. Section 5 describes
onion routing and the application specific proxies in
more detail. Section 6 describes the system’s vulner-
abilities, and section 7 describes the implementation
choices that were made for security reasons. Section 8
presents related work, and section 9 presents conclud-
ing remarks.

2 Onion Routing Overview

In onion routing, instead of making socket connec-
tions directly to a responding machine, initiating ap-
plications make connections through a sequence of ma-
chines called onion routers. The onion routing network
allows the connection between the initiaior and respon-
der to remain anonymous. We call this an anonymous
socket connection or anonymous connection. Anony-
mous connections hide who is connected to whom, and
for what purpose, from both outside eavesdroppers and
compromised onion routers. If anonymity is also de-
sired, then all identifying information must be removed
from the data stream before being sent over the anony-
mous connection.

We call the onion routing network topology that we
use in this paper the basic configuration. This is illus-
trated in figure 1.

-. - - _ _

Secure Site ‘\,Internet

Secure Site ./ T\
Node controlled bv

~

.- _ _ - - - - Anonymous Connection from W to Z
Link Encrypted Connection Between Onion Routers

Onion Router

Proxy/Onion Router

0
0
Figure 1. Routing Topology.

In the basic configuration, an onion router sits on
the firewall of a sensitive site. This onion router serves

as an interface between machines behind the firewall
and the external network. Connections from machines
behind the firewall to the onion router are protected
by other means (e.g., physical security). To complicate
tracking of traffic originating or terminating within the
sensitive site, this onion router should also route data
between other onion routers. This is the basic topology
that we will use for the rest of this paper.

The use of anonymous connections by two sensitive
sites that both control onion routers effectively hides
their communication from outsiders. However, if the
responder is not in a sensitive site (e.g., the responder
is some arbitrary Web server) the data stream from
the sensitive initiator must also be anonymixed. Oth-
erwise, even rudimentary analysis of the unprotected
communication between the last onion router in the
anonymous connection and the responder may reveal
the initiator’s identity.

Onion routers in the network are connected by long-
standing (permanent) socket connections. Anonymous
connections through the network are multiplexed over
the longstanding connections. For any anonymous con-
nection, the sequence of onion routers in a route is
strictly defined at connection setup. However, each
onion router can only identify the previous and next
hops along a route. Data passed along the anony-
mous connection appears different at each onion router,
so data cannot be tracked en route and compromised
onion routers cannot cooperate by correlating the data
stream each sees.

The onion routing network is accessed via proxies.
An initiating application makes a socket connection to
an application specific proxy on some onion router.
That proxy defines a route through the onion rout-
ing network by constructing a layered data structure
called an onion and sending that onion through the
network. Each layer of the onion defines the next hop
in a route. An onion router that receives an onion
peels off its layer, identifies the next hop, and sends
the embedded onion to that onion router. After send-
ing the onion, the initiator’s proxy sends data through
the anonymous connection.

The last onion router forwards data to another type
of proxy on the same machine, called the responder’s
proxy, whose job is to pass data between the onion
network and the responder. An example onion rout-
ing network and anonymous socket connection is also
illustrated in figure 1.

In addition to carrying next hop information, each
onion layer contains key seed material from which keys
are generated for crypting’ data sent forward or back-

‘We define the verb c r y p t to mean the application of a cryp-
tographic operation, be it encryption or decryption.

45

ward along the anonymous connection. (We define for-
ward to be the direction in which the onion travels and
backward as the opposite direction.)

Once the anonymous connection is established, it
can carry data. Before sending data over an anony-
mous connection, the initiator's onion router adds a
layer of encryption for each onion router in the route.
As data moves through the anonymous connection,
each onion router removes one layer of encryption, so
it arrives at the receiver as plaintext. This layering oc-
curs in the reverse order for data moving back to the
initiator. So data that has passed backward through
the anonymous connection must be repeatedly post-
crypted to obtain the plaintext.

By layering cryptographic operations in this way,
we gain an advantage over link encryption. As data
moves through the network it appears different to each
onion router. Therefore, an anonymous connection is
as strong as its strongest link, and even one honest node
is enough to maintain the privacy of the route. In link
encrypted systems, compromised nodes can cooperate
to uncover route information.

Although we call this system onion routing, the
routing that occurs here does so at the application
layer of the protocol stack and not at the IP layer.
More specifically, we rely upon IP routing to route data
passed through longstanding socket connections. An
anonymous connection is comprised of several linked
longstanding socket connections. Therefore, although
the series of onion routers in an anonymous connection
is fixed for the lifetime of that anonymous connection,
the route that data actually travels between individual
onion routers is determined by the underlying IP net-
work. Thus, onion routing may be compared to loose
source routing.

Onion routing depends upon connection based ser-
vices that deliver data uncorrupted and in-order. This
simplifies the specification of the system. TCP socket
connections, which are layered on top of a connection-
less service like IP, provide these guarantees. Similarly,
onion routing could easily be layered on top of other
connection based services, like ATM.

Our current prototype of onion routing considers the
network topology to be static and does not have mecha-
nisms to automatically distribute or update public keys
or network topology. These issues, though important,
are not the key parts of onion routing and will be ad-
dressed in a later prototype.

3 Empirical Data

We invite readers to experiment with our pro-
totype of onion routing by using it to anony-

mously surf the Web, send anonymous e-mail, and
do remote logins. For instructions please see
http://www.itd.nrl.navy.mil/ITD/5540/
pro j ect s/onion-rout ing.

Be aware that accessing a remote onion router does
not really preserve anonymity, because the connection
between your machine and the first onion router is not
protected. Even if that connection were protected, you
have no reason to trust the remote onion router. If you
had a secured connection to an onion router you trust,
it could use our onion router as one of several inter-
mediate routers to further complicate traffic analysis.
Remote use of our site provides no greater anonymity
than is provided by the Anonymizer [l].

In our experimental onion routing network, five
onion routers run on a single Sun UltraSparc 2270.
This machine has two processors, and 256MB of mem-
ory. Anonymous connections are routed through a ran-
dom sequence of five onion routers.2 Connection setup
time should be comparable to a more distributed topol-
ogy. Data latency, however, is more difficult to judge.
Clearly, data will travel faster over socket connections
between onion routers on the same machine than over
socket connections between different machines. How-
ever, the removal or addition of layers of encryption is
not pipelined, so data latency may be worse on a single
machine.

Onion routing's overhead is mainly due to public
key cryptography and is incurred while setting up an
anonymous connection. On an UltraSparc running a
fast implementation of RSA [a], a single public key de-
cryption of a 1024 bit plaintext block using a 1024 bit
private key and a 1024 bit modulus takes 90 millisec-
onds. Encryption is much faster, because the public
keys are only 16 bits long. (This is why RSA signature
verification is cheaper than signing). So, the public key
cryptographic overhead for routes spanning five onion
routers is just under 0.5 seconds. This overhead can
be further reduced, either with specialized hardware,
or even on PCs (a 200 Mhz Pentium would be twice as
fast).

Relatively large connection setup overhead may be
tolerable in some applications. For example, socket
connection setup may be slow anyway. If a connection
is long lived, setup overhead may be reasonable. For
example, in WWW requests, a single document may
require several requests to the same host to retrieve
different components of the same document. Although
each individual request and response pair may be short,
the combination of all request/response pairs may be
lengthy. There is no reason that the same anonymous

2Five onion routing hops per connection provides reasonable
security at reasonable cost. See section 6.

46

http://www.itd.nrl.navy.mil/ITD/5540

connection could not be used to carry the traffic for
each of the real socket connections, either sequentially
or multiplexed. In fact, the preliminary specification
for HTTP 1.1 defines pipelined connections to amor-
tize the cost of socket setup, and pipelined connections
would also transparently amortize the increased cost of
anonymous connection setup. Our Web proxy will be
made HTTP 1.1 compliant when HTTP 1.1 is adopted.

4 Threat Model

We assume that the network is subject to both pas-
sive and active eavesdropping. That is:

0 All traffic is visible.

0 All traffic can be modified.

0 Onion routers may be compromised.

0 Compromised onion routers may cooperate.

In addition, a sophisticated adversary may be able
to detect timing coincidences such as the near simul-
taneous opening of connections. Timing coincidences
are very difficult to overcome without wasting network
capacity, especially when real-time communication is
important.

The initiator’s proxy and the first onion router are
the most trusted elements of the onion routing system.
That is one reason why, in our basic configuration, both
the proxy and onion router are placed under the control
of the sensitive site.

This threat model directly motivates certain design
decisions in onion routing. Because traffic is visible,
the headers and payload of all traffic are essentially
link encrypted between onion routers so the same data
looks different when traveling between onion routers.
Because traffic can be modified, stream ciphers [14]
are used for encryption. Inserting, deleting, modify-
ing, or replaying traffic anywhere en route will disrupt
the stream and will result in persistent unrecogniz-
able changes downstream; thus, data cannot be tracked
moving through the system. However, the plaintext
will be unreadable by the responder, causing a denial-
of-service attack. Because onion routers may be com-
promised, anonymous connections span several onion
routers. Because compromised onion routers may co-
operate, data is encrypted in a layered fashion so it ap-
pears different to each onion router, not only between
onion routers.

In general, our design chooses denial-of-service over
the compromise of private information. For example,
we assume that data moves through sockets in order

and uncorrupted. A compromised onion router can
easily violate this assumption; however, the result is
unpredictable and unreadable data emerging from the
system rather than the direct release of any informa-
tion. Since replay of an onion will cause the same
embedded onions to appear downstream, onion replay
may reveal connection information. However, onions
themselves cannot be replayed through an honest node.
Onion routers remember onions they have passed by
storing a hash of previously passed onions. If a replay is
detected, the onion is simply dropped. To control stor-
age requirements, onions are equipped with expiration
times. Here too, denial-of-service supersedes compro-
mise. If clocks are far enough out of synchronization
one way, the only possible result is for a fresh onion
to be viewed as expired and ignored. If they are far
enough out of synchronization the other way, the only
possible result is for a passed onion to be stored beyond
its expiration.

5 Onion Routing

5.1 Onion Routing Proxies

A proxy is a transparent service between two appli-
cations that would usually make a direct socket con-
nection to each other but cannot. For example, a fire-
wall might prevent direct socket connections between
internal and external machines. A proxy running on
the firewall may enable such connections. Proxy aware
applications are becoming quite common.

Our goal has been to design an architecture for pri-
vate communication that would interface with unmodi-
f ied applications, so we chose to use proxies as the inter-
face between applications and onion routing’s anony-
mous connections. For applications that are designed
to be proxy aware, (e.g., WWW browsers), we sim-
ply design appropriate interface proxies. Surprisingly,
for certain applications that are not proxy aware (e.g.,
RLOGIN), we have also been able to design interface
proxies. In this paper, we will focus on the HTTP
proxy for Web browsing.

In the basic configuration where a firewall lives be-
tween a trusted and untrusted network, the onion
router and its proxies live on the firewall. There are
two classes of proxies: one that bridges connections
from initiating applications into the onion routing net-
work (the application proxy), and another that com-
pletes the connection from the onion routing network
to responders (the responder proxy).

Because the application proxy bridges between ap-
plications and the onion routing network, it must un-
derstand both application protocols and onion rout-

47

ing protocols. Therefore, to simplify the design of ap-
plication specific proxies, we partition the proxy into
two components: the client proxy and the core proxy.
The client proxy bridges between a socket connection
from an application and a socket connection to the core
proxy. It is the obligation of the client proxy to massage
the data stream so both the core proxy and the respon-
der proxy can be application independent. Specifically,
the client proxy must prepend to the data stream a
standard structure that identifies the ultimate destina-
tion by either hostname/port or IP address/port. Ad-
ditionally, it must process a one byte return code from
the responder proxy and either continue if no error is
reported or report the onion routing error code in some
application specific meaningful way.

Upon receiving a new request, the core proxy uses
the prepended standard structure as a hint in build-
ing an onion defining the route of an anonymous con-
nection to that destination. It then passes the onion
to the onion routing network building the anonymous
connection to the responder proxy, and then passes the
prepended standard structure to the responder proxy
specifying the ultimate destination. From this point
on, the core proxy blindly relays data back and forth
between the client proxy and the onion routing network
(and thus the responder proxy at the other end of the
anonymous connection).

For the services we have considered to date, a nearly
generic responder proxy is adequate. Its function is
to read the data stream from the terminating onion
router. The first datum received will be the stan-
dard structure specifying the ultimate destination. The
responder proxy makes a socket connection to that
IP/port, reports a one byte status message back to the
onion routing network (and thus back to the core proxy
which in turn forwards it back to the client proxy),
and subsequently moves data between the onion rout-
ing network and the new socket. (For certain services,
like RLOGIN, the responder proxy also infers that the
new socket must originate from a trusted port.)

As an example, consider the client proxy for HTTP.
The user configures his browser to use the onion rout-
ing proxy. His browser may send the proxy a re-
quests like GET http: //www .domino. com/showcase/
HTTP/i, 0 followed by optional fields.

The client proxy is listening for new requests. Once
it obtains the GET request, it creates the standard
structure and sends it (along a new socket connec-
tion) to the core proxy, to inform the core proxy of the
service and destination of the anonymous connection.
The client proxy then modifies the GET request t o GET
/showcase/ HTTP/I .O and sends it directly (through
the anonymous connection) to the HTTP server, fol-

lowed by the optional fields. Notice that the server
name and http: // are eliminated because the connec-
tion is made directly to the HTTP server.

The client proxy essentially makes a connection to
nnn.domino.com, and issues a request as if it were a
client. Once this request is transmitted to the server,
all proxies blindly forward data in both directions be-
tween the client and the server until the socket is bro-
ken by either side.

For the anonymizing onion routing HTTP proxy,
the client proxy proceeds as outlined above with one
change: it is now necessary to sanitize the optional
fields that follow the GET command because they may
contain identity information. Furthermore, the data
stream during a connection must be monitored, to san-
itize additional headers that might occur during the
connection. For our anonymizing HTTP proxy, opera-
tions that store cookies on the user’s browser (to track
a user, for example) are removed. This reduces func-
tion, so applications that depend upon cookies (like
online shopping baskets) may not work properly.

The core proxy’s function is to pass data between
multiple socket connections from client proxies and the
first onion router. Therefore, the core proxy is not ap-
plication specific but must understand the onion rout-
ing protocol, which defines how multiplexed connec-
tions are handled. The core proxy must repeatedly
pre-crypt the data stream before passing it along the
onion routing network. The repeated pre-cryptions are
the inverses of the cryptographic functions that will be
applied by the onion routers as the data moves along
the anonymous connection. Similarly, the core proxy
must repeatedly post-crypt data from the anonymous
connection with the inverses of the cryptographic func-
tions that were applied by the onion routers, before
passing the plaintext to the client proxy.

5.2 Implementation

This section presents the interface specification be-
tween the components in an onion routing system. To
provide some structure to this specification, we will
discuss components in the order that data would move
from an initiating client to a responding server.

There are four phases in an onion routing sys-
tem: network setup, which establishes the longstanding
connections between onion routers; connection setup,
which establishes anonymous connections through the
onion router network; data movement over a anony-
mous connection; and the destruction and cleanup of
anonymous connections. We will commingle the dis-
cussion of these below.

48

http://nnn.domino.com

5.3 Client Proxy

The interface between an application and the client
proxy is application specific. The interface between the
client proxy and the core proxy is defined as follows.
For each new proxy request, the client proxy first deter-
mines if it will handle or deny the request. If rejected, it
reports an application specific error message and then
closes the socket and waits for the next request. If
accepted, it creates a socket to the core proxy’s well
known port. The client proxy then sends a standard
structure to the core proxy of the form:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
t-+-+-+-t-+-+-t-+-+-+-t-+-+-+-+-+-+-+-+-+-t-+-+-t-+-+-+-+-+-t-+-t

I Version I Protocol I Retry Count I Addr Format I
+-t-t-t-+-+-+-+-+-+-+-+-+-+-+-+-t-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Version is currently defined to be 1. Protocol is
either 1 for RLOGIN, 2 for HTTP, or 3 for SMTP.
Retry Count specifies how many times the responder
proxy should attempt to retry connecting to the ulti-
mate destination. Finally, the Addr Format field spec-
ifies the form of the ultimate destination address: 1
for a NULL terminated ASCII string with the host-
name immediately followed by another NULL termi-
nated ASCII string with the destination port number,
or a 2 for sockaddr-in data structure specifying both
the internet address and the destination port. The ul-
timate destination address is sent after this standard
structure, and the client proxy waits for a one byte
error code before sending data.

5.4 Core Proxy

Upon receiving the standard structure, the core
proxy can decide whether to accept or reject the re-
quest based on the protocol, anonymity, destination
host, destination port, or the identity of the client
proxy. If rejected, it sends an appropriate error code
back to the client proxy, closes the socket, and waits for
the next request. If accepted, it proceeds to build the
anonymous connection to the responder proxy using
the standard structure, sends the standard structure
to the responder proxy over the anonymous connec-
tion, and then passes all future data to and from the
client proxy and anonymous connection. The repeated
pre and post cryptions and packaging of the data is
discussed later in section 5.6.

5.5 Onions

To build the anonymous connection to the respon-
der proxy, the core proxy creates an onion. An onion

is a multi-layered data structure that encapsulates the
route of the anonymous connection starting from the
responder proxy and working backward to the core
proxy.

Each layer has the following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 6 6 7 8 9 0 ~ 2 3 4 6 6 7 8 9 0 1
+-+-+-t-+-t-t-+-+-+-t-+-+-+-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-t-+

I01 Version IBack FlForp FI Destination Port I

I Destination Address I

I Expiration Time (GNT) I

I I

I I
t Key Seed Naterial +
I I

I I

+-t-+-+-+-+-t-+-t-+-+-t-+-t-t-t-t-+-+-+-+-+-t-+-+-+-+-+-t-+-+-t-+

t-t-t-t-t-+-+-+-+-+-+-t-t-+-+-t-+-+-t-t-t-+-t-t-t-t-+-t-t-t-+-+-+

t-+-t-+-t-t-t-+-t-t-+-+-+-+-+-t-+-+-+-+-+-+-+-t-t-+-+-t-+-t-t-+-t

+ +

t +

+-+-+-t-+-t-t-t-t-t-t-t-t-t-t-t-t-t-+-+-+-+-+-t-t-+-t-+-t-t-t-t-t

As we will see below, the first bit must be zero for
RSA public key cryptography to succeed. Following
the zero bit is the Version Number of the onion routing
system, currently defined to be 1.

The Back F field denotes the cryptographic function
to be applied to data moving in the backward direc-
tion (defined as data moving in the opposite direction
that the onion traveled, usually toward the initiator’s
end of the anonymous socket connection) using key:!
defined below. The Forw F field denotes the crypto-
graphic function to be applied to data moving in the
forward direction (defined as data moving in the same
direction that the onion traveled, usually toward the
responder’s end of the anonymous socket connection)
using key3 defined below. Currently defined crypto-
graphic functions are: 0 for Identity (no encryption), 1
for DES OFB (output feedback mode) (56 bit key), and
2 for RC4 (128 bit key). The Destination Address and
Destination Port indicate the next onion routser in net-
work order and are both 0 for the responder proxy. The
Expiration Time is given in network order in seconds
relative to 0O:OO:OO UTC January 1, 1970 (i.e. stan-
dard UNIX time(2) format) and specifies how long the
onion router at this hop in the anonymous connection
must track the onion against replays before it expires.
Key Seed Material is 128 bits long and is hashed three
times with SHA to produce three cryptographic keys
(key l , k e y z , and key3) of 128-bits each (the first eight
bytes of each SHA output are used for DES and the
first 16 bytes for RC4 keys).3

Since we use RSA public key cryptography with a
modulus size of 1024-bits, the plaintext block size is
1024 bits and must be strictly less than the modulus

3Details on the cryptographic operations used in this paper
can be found in [14].

49

numerically. To avoid problems, we force this relation
by putting the most-significant bit first and setting it
to 0 (the leading 0 above). Furthermore, the inner-
most layer of the onion is padded on the end with an
additional 100 bytes prior to RSA encryption being
performed.

In version 1, an onion has five layers. An onion
is formed iteratively, innermost layer first. At each
iteration, the first 128 bytes of the onion are encrypted
with the public key of the onion router that is intended
to decrypt that layer. The remainder of the onion is
encrypted, using DES OFB with an IV (initialization
vector) of 0 and key1 (derived from K e y Seed Material
in that layer as defined a b ~ v e) . ~

Before discussing how onions and data are sent be-
tween onion routers, we will define onion router inter-
connection.

5.6 Onion Router Interconnection

During onion network setup (not to be confused
with anonymous connection setup), longstanding con-
nections between neighboring onion routers are estab-
lished and keyed. The network topology is predefined
and each onion router knows its neighbors and the RSA
public keys of all nodes in the network.

To remain connected to each of its neighbors, onion
routers must both listen for connections from neigh-
bors and attempt to initiate connections to neighbors.
To avoid deadlock and collision issues between pairs
of neighbors, an onion router listens for connections
from neighbors with “higher” IP/port addresses and
initiates connections to neighbors with “lower” IP/port
addresses. “Higher” and “Lower” are defined with re-
spect to network byte ordering.

The protocol has two phases: connection setup and
keying. The initiating onion router opens a socket to
a well known port of its neighboring onion router, and
sends its IP address and well known port (the port is
included to allow multiple onion routers to run on a
single machine) in network order to identify itself. The
keying phase ensues, using STS [8] which will gener-
ate two DES 56-bit keys. The link encryption over the
longstanding connections is done by DES OFB with
IVs of 0 and these two keys (one for data in each di-
rection).

Once keyed, communication between onion routers
is packaged into fixed sized cells, which allows for the
multiplexing of both anonymous connections and con-
trol information over the longstanding connections. In

We use DES to encrypt the onion, and for link encryption
between onion routers, because it has no licensing fees and can be
used as a pseudorandom number generator. We would be happy
to use a stronger pseudorandom number generator, however.

version 1 of the onion routing system, there are four
types of cells: PADDING (0), CREATE (l), DATA
(a), and DESTROY (3) .

Cells have the following structure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
t-+-+-+-+-t-+-t-+-+-+-t-+-+-+-+-t-t-+-+-+-+-+-+-t-+-+-+-+-t-t-+-+
I ACI I Command I Length I
+-t-+-+-+-t-t-+-+-+-t-t-t-t-+-t-t-t-t-+-+-+-+-t-t-t-t-+-+-+-t-t-+

....................... Payload (44 bytes)

+-+-+-+-+-t-+-+-+-+-+-t-t-+-+-+-+-t-+-+-+-+-t-+-t-t-+-+-+-t-t-t-+

I I

I I

The ACI (anonymous connection identifier) and
Command fields are always encrypted using the link
encryption between neighboring nodes. Additionally,
the Length and Payload fields are encrypted using the
link encryption between neighboring nodes if the com-
mand is either PADDING (0) or DESTROY (3). For
CREATE (1) commands, the length is link encrypted,
but the payload is already encrypted because it car-
ries the onion. For DATA (2) commands, the length
and entire payload are encrypted using the anonymous
connection’s forward or backward cryptographic oper-
ations.

Each anonymous connection is assigned an ACI at
each onion router, which labels an anonymous connec-
tion when it is multiplexed over the longstanding con-
nection to the next onion router. ACIs must be unique
on their longstanding connection but need not be glob-
ally unique. To move an onion through the system,
an onion router peels off the outermost layer, identify-
ing the next hop. It checks the freshness (not expired
and not replayed) of the onion, computes the neces-
sary cryptographic keys, seeds the forward and back-
ward cryptographic engines, chooses a new ACI for the
next hop in the new connection, and then builds a data
structure associated with that connection which maps
incoming to outgoing ACIs and the cryptographic en-
gines associated with forward and backward data.

The rest of the onion is padded randomly to its orig-
inal length, placed into CREATE cells, and then sent
out in order to the appropriate neighbor. The payload
of the last cell is padded with random bits to fill the
cell if necessary (to avoid traceability).

Data moves through an anonymous connection in
DATA cells. At each onion router, except for the ini-
tiator’s, both the length and payload fields of a cell are
crypted using the appropriate cryptographic engine.
The new cell is sent out to the appropriate neighbor.
The initiator’s onion router must repeatedly crypt data
to either add the appropriate layers of cryption on out-
going data, or remove layers of cryption from incoming
data. When constructing a DATA cell from a plaintext
data stream, the cell is (partially) filled, its true length

50

is set, and all 45 bytes of the length and payload fields
are repeatedly crypted using the stream ciphers defined
by the onion. Therefore, when the cell arrives at the
responder proxy, the length field reflects the length of
the actual data carried in the payload.

If a connection is broken, a DESTROY command
is sent to clean up state information. The ACI field
of the DESTROY command carries the ACI of the
broken connection. The length and payload must be
random. Upon receipt of a DESTROY command, it
is the responsibility of an onion router to forward the
DESTROY appropriately and to acknowledge receipt
by sending another DESTROY command back to the
previous sender. After sending a DESTROY command
about a particular ACI, an onion router may not send
any more cells along that anonymous connection. Once
an acknowledgment DESTROY message is received, an
onion routing node considers the anonymous connec-
tion destroyed and the ACI can be used as a label for
a new anonymous connection.

The PADDING command is used to inject data into
a longstanding socket to further confuse traffic analysis.
PADDING cells are discarded upon receipt.

Each onion router also reorders cells moving through
i t , according to a scheme that we call layered reordering
(see section 6) that both preserves the order of cells in
each anonymous connection and caps how long cells
may be delayed by an onion router.

5.7 Responder Proxy

When a routing node receives an onion with Desti-
nation Address and Destination Port of 0 , it knows it
is to act as a responder proxy. It proceeds to read the
standard structure that will be the first data across the
anonymous socket connection, establishes a connection
to the ultimate destination as indicated, and returns
the status code. After this, it will blindly forward data
between the anonymous connection and the connection
to the responder’s machine.

6 Vulnerabilities

Onion routing is not invulnerable to traffic analysis
attacks. We now define an attack approach based on
several simplifying assumptions. We characterize the
complexity of an attack based on these assumptions,
and note that real attacks will be more expensive. We
also note that any scheme resistant to traffic analysis
cannot increase the space of potential recipients of a
message to more than the number of possible recipients
on the network. So, expecting the complexity of traffic
analysis to be similar to the cost of brute force attack

on cryptographic algorithms (e.g., 256) is unreasonable.
Furthermore, the cost of traffic analysis searches may
be higher, since a network must be monitored.

Assume that each onion router has connections to
eight (a3) other onion routers, and that each onion
router has a secured connection to a sensitive site. As-
sume that all anonymous connections pass through five
onion routers. Assume furthermore that since all cells
moving through an onion routing network are of fixed
length (48 bytes) it is possible to identify when cells
begin and end. So we reduce the problem to track-
ing markers, where markers indicate the beginning of a
cell. Assume further, that an attacker can start mon-
itoring the system when an onion router’s incoming
queues and outgoing queues are empty, so the attacker
can determine the order in which markers arrive at an
onion router.

Under these assumptions, tracking markers through
the network depends on the reordering done at each
onion router. If no reordering is done (i.e., cells move
from incoming to outgoing queues using a FIFO strat-
egy), then it appears easy to track markers. The first
marker to reach on onion router will be the first to
leave, and its route through the network can be fol-
lowed. But analysis is not that simple. Since each
onion router is both an onion routing proxy and an in-
termediate onion router, a new marker may enter the
network at any time, and it is impossible for an ob-
server to determine whether the new marker arrived
before or after the first marker on the incoming queues
(since a sensitive site’s connection to its onion router
is protected). If the onion routing proxy is busy, the
marker could end up on one of two outgoing queues. (If
the onion routing proxy is not busy, only one outgoing
queue will be active.) Under the most complicating
conditions, a marker could ultimately end up in one of
25 outgoing queues.

To further complicate traffic analysis, onion routers
reorder incoming markers, so data does not move
through the network in a simple FIFO manner. The
optimal goal would be to make it equally likely that an
incoming marker is output on any of an onion router’s
8 outgoing queues. In that case, a single marker could
end up at one of (23)5 outgoing queues. Notice that
we cannot improve on this number, since it defines all
possible reachable queue^.^

Since onion routing is meant for real-time communi-
cation, we use a limited amount of reordering. At any

5This does not imply that one can only reach 215 sites via
onion routing. Since the responder’s proxy can make connec-
tions to any Internet site, one can anonymously browse any Web
site. If the goal is to have anonymous connections between two
sensitive sites, then any one site can communicate with at most
212 other sensitive sites.

51

point in time, markers on several incoming queues may
be considered to arrive at the same time. These mark-
ers may be moved to outgoing queues in any arbitrary
order that both maintains fairness of data movement
for every anonymous connection and preserves the or-
der of data on each anonymous connection.

We define n-layered reordering as moving the first
n markers on each incoming queue to outgoing queues
in any arbitrary order subject to the order preserv-
ing restriction just described. If an incoming queue
has fewer than n markers, all markers on the queue
are moved. (In 1-layer reordering, the order preserving
restriction is trivially satisfied.) Notice that although
markers may be delayed at any particular onion router,
on average data latency is not hurt since markers are
equally likely to be forwarded early.

Using layered reordering, traffic analysis becomes
more complicated, since a marker could end up on one
of several output queues. However, imagine that we
know that two markers belong to the same anonymous
connection. So, if we know which outgoing queues are
possible for each of the markers, the intersection of
those sets defines which queues are possible for the next
hop in the anonymous connection. The goal, therefore,
is to choose a layered reordering depth that makes it
very likely that all possible outgoing queues will be
present in each set most of the time.

Since data latency is not hurt by layered reorder-
ing it is possible to predict the window during which a
marker is likely to exit the onion routing network. This
invites another kind of traffic analysk6 It should be
possible to identify the near simultaneous opening of
endpoint connections. More specifically, if an attacker
wishes to confirm that two parties are communicating
frequently, if they happen to have many more simulta-
neous connection openings than is expected by chance,
they are probably communicating. This attack, how-
ever, is not possible if the onion routing basic config-
uration is only used for communication between sites
that control onion routing proxies, since the connection
between the site and its onion router is assumed to be
protected. But, the basic configuration is not appro-
priate everywhere, so this attack may persist in certain
scenarios.

7 Implementation Vulnerabilities

An implementation of a secure design can be inse-
cure. In this section, we describe several implementa-
tion decisions that were made for security considera-
tions.

6Thanks to John Kelsey for helpful comments on this point.

Onions are packaged in a sequence of cells that must
be processed together. This onion processing involves a
public key decryption operation which is relatively ex-
pensive. Therefore, it is possible to imagine an imple-
mentation that clears outgoing queues while an onion
is being processed, and then outputs the onion. There-
fore, any period of inactivity on the out-bound queues
is likely to be followed by a sequence of onion cells be-
ing output on a single queue. Such an implementation
makes tracking easier and should be avoided.

After processing at each onion router, onions are
padded at the end to compensate for the removed layer.
This padding must be random, since onions are not
link encrypted between onion routers. Similarly, the
length and payload of a DESTROY command must be
new random content at each onion router; otherwise,
compromised onion routers could track that payload.

In a multi-threaded implementation, there is a sig-
nificant lure to rely upon the apparent scheduling ran-
domness to reorder events. If reordering is important
to the secure operation of the system, deliberate re-
ordering is crucial, since low level system randomness
may in fact be predictable.

There are two vulnerabilities that we do not yet
know how to address. If part of the onion routing net-
work is taken down, traffic analysis is greatly simplified.
Also, if a longstanding connection between two onion
routers is broken, it will result in many DESTROY
messages, one for each anonymous connection that was
routed through that longstanding connection. There-
fore, a compromised onion router may infer from near
simultaneous DESTROY messages that the associated
anonymous connections had some common route. De-
laying DESTROY messages hurts performance, since
we require that a DESTROY message propagate to the
endpoints to take down the connection that is visible
to the user. Carrying the DESTROY message through
the anonymous connection and garbage collecting dor-
mant anonymous connections later would be ideal, but
we do not know how to efficiently insert control infor-
mation into a raw data channel, especially considering
our layered e n ~ r y p t i o n . ~

8 Related Work

Chaum [3] defines a layered object that routes data
through intermediate nodes, called mixes. These in-

70ne could imagine sending control information by insert-
ing some random cell into the data stream. The application or
its proxy could detect corrupted data, and terminate at the ap-
plication level, without destroying the anonymous connection.
However, this is risky for two reasons: it may not always be pos-
sible to detect corrupted data, and a random inserted cell may
appear uncorrupted.

52

termediate nodes may reorder, delay, and pad traffic
to complicate traffic analysis. Our onion routers are

throughout the Internet, which improves hiding.

based on mixes. Some work has been done using mixes
in ATM networks [5].

9 ~ ~ ~ ~ l ~ ~ i ~ ~

Anonymous Remailers like [7, 111 use mixes to pro-
vide anonymous e-mail services. Some invent an ad-
dress through which mail can be forwarded back to the
original sender. Remailers work in a store and forward
manner at the mail application layer, by stripping off
headers at each mix and forwarding the mail message
to the next mix. Some remailers provide confirmation
of delivery.

In [9], a structure similar to an onion is used to
forward individual IP packets through a network. By
maintaining tracking information at each router, ICMP
error messages can be moved back along the hidden
route. Essentially, a connection is built for each packet
in a connectionless service.

In [12], mixes are used to provide untraceable com-
munication in an ISDN network. As described there, in
an ISDN system, each ISDN line is assigned to a partic-
ular local switch (i.e., local exchange), and switches are
interconnected by a (long distance) network. Anony-
mous calls in ISDN rely upon an anonymous connec-
tion within each switch between the caller and the long
distance network, which is obtained by routing calls
through a predefined series of mixes. The long distance
endpoints of the connection are then mated to complete
the call. (Notice that observers can tell which local
switches are connected.) This approach relies upon two
unique features of ISDN switches as described in [la].
Since each ISDN line has a subset of the switch’s total
capacity pre-allocated to i t , there is no (real) cost as-
sociated with keeping an ISDN line active all the time,
either by making calls to itself, to other ISDN lines
on the same switch, or to the long distance network.
Keeping ISDN lines active complicates traffic analysis
because an observer cannot track coincidences.

Since each ISDN line has a control circuit connec-
tion to the switch, the switch can broadcast messages
to each line using these control circuits. So, within
a switch a truly anonymous connection can be estab-
lished: An ISDN line makes an anonymous connection
to some mix. That mix broadcasts a token identify-
ing itself and the connection. A recipient of that token
can make another anonymous connection to the speci-
fied mix, which mates the two connections to complete
the circuit. In anonymous ISDN, the mixes hide com-
munication within the local switch, but connections
between switches are not hidden. This implies that
all calls between two businesses, each large enough to
use an entire switch, would reveal which businesses are
communicating. In onion routing, mixing is dispersed

Anonymous socket connections provide protection
against both eavesdropping and traffic analysis. Al-
though our focus is on anonymous connections, and
not anonymous communication, anonymous communi-
cation is also possible by removing identifying informa-
tion from the data stream. Onion routing’s anonymous
connections are application independent and can inter-
face with unmodified Internet applications by means of
proxies. Our implementation of onion routing includes
proxies for Web browsing, e-mail, and remote login.
We have also implemented anonymizing versions of the
Web and e-mail proxies.

It is instructive to compare onion routing’s anony-
mous e-mail service with other anonymous remailers.
All services remove identifying headers. Most remail-
ers work in a store and forward manner, either between
mixes or simply sendmail daemons. Onion routing’s
service, however, makes an anonymous connection di-
rectly to the recipient’s sendmail daemon. This has
both advantages and disadvantages. The disadvantage
is that mixing is not done as well, since the connection
is made in real time. The advantage is that the anony-
mous connection is separated from the application, so
anonymous e-mail systems are considerably simplified
because the application specific part does not have to
move data through the network. Furthermore, because
the onion routing network can carry many types of
data, it has the potential to be more heavily utilized
than a network that is devoted only to e-mail. Heavy
utilization is the key to anonymity.

Anonymous remailers typically provide a mechanism
to reply to anonymous e-mail. A remailer may assign
pseudonyms through which mail is forwarded. These
pseudonyms must be stored at the remailer in order to
properly process replies. In onion routing, it is possi-
ble for a sender to build a reply onion that defines an
anonymous connection to him. This reply onion can
be included in mail messages. When a response is sent
to the appropriate proxy on an onion router, the re-
ply onion is first processed to create the anonymous
connection back to the sender. The reply is then sent
over that anonymous connection. Notice that the re-
ply onion is equivalent to a pseudonym, except that
it is not stored at any onion router. So onion routers
are stateless remailers. To identify users of anonymous
onion routed e-mail, reply onions must first be obtained
and all relevant onion routers must be compromised.

Anonymous connections may be used as a new prim-
itive that enables novel applications in addition to fa-

53

cilitating secure versions of existing services. For ex-
ample, in a cellular phone system, the location of hand-
sets must be tracked, even when the phone is waiting
for a call (in standby mode). This is because the cellu-
lar network must know through which base station to
route calls. However, it may be undesirable to let the
cellular network know the location of its subscribers.
An alternative architecture that protects such location
information, may be constructed using anonymous con-
nections. To make a call, the phone constructs an onion
which defines a route through the local base station
to some billing station. The phone identifies the sub-
scriber to the billing station (for billing purposes) but
does not have to reveal its location. The billing sta-
tion completes the call. To receive a call, the handset
is paged over a large area. This paging turns on the
handset, which then makes a call to the paged num-
ber (through an anonyrnous connection as described
above). As an aside, the paging approach to receiv-
ing a call significantly conserves battery use, since the
phone is off unless it is involved in a call.

Alternatives to the basic configuration exist which
move trust closer to the user. For example, an Inter-
net Services Provider (ISP) could run an onion router
that accepts onions from its subscribers. Subscribers
would generate these onions on their trusted local ma-
chines. The ISP would not know with whom the cus-
tomer is communicating. And the subscriber need not
fully trust the ISP to maintain his privacy.

Acknowledgments

We were helped by discussions with many peo-
ple including Ran Atkinson, Markus Jakobbsen, John
Kelsey, John McLean, Cathy Meadows, Andy Moore,
Moni Naor, Holger Peterson, Birgit Pfitzmann, Michael
Steiner, and James Washington. We thank the anony-
mous referees for helpful suggestions. We thank the
Isaac Newton Institute, Cambridge. Some of these dis-
cussions were conducted while one of the authors was
in residence there. The fast UltraSparc implementa-
tion of RSA was done by Tolga Acar and Cetin Kaya
KOG. This work was supported by ONR.

References

[l] The Anonymizer. http: //www. anonymizer. com

[2] T . Acar, B. S. Kaliski, Jr . , and C. KO$. Analyzing
and Comparing Montgomery Multiplication Algo-
rithms, IEEE Micro, 16(3):26-33, June 1996.

[3] D. Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms, Communica-
tions of the A C M , v. 24, n. 2, Feb. 1981, pp. 84-88.

[4] D. Chaum, The Dining Cryptographers Problem:
Unconditional Sender and Recipient Untraceabil-
ity, Journal of Cryptology, 1/1, 1988, pp. 65-75.

[5] S. Chuang. Security Management of ATM Net-
works, Ph.D. thesis, in progress, Cambridge Uni-
versity.

[6] D. E. Comer. Internetworking with TCP/IP,
Volume 1: Principles, Protocols, and Architec-
ture, Prentice-Hall, Engelwood Cliffs, New Jersey,
1995.

[7] L. Cottrell. Mixmaster and Remailer Attacks,
http://obscura.obscura.com/'loki/remailer
/remailer-essay.htm1

[8] Whitfield Diffie, Paul C. van Oorschot, and
Michael J . Wiener. Authentication and Authenti-
cated Key Exchanges. Designs, Codes, and Cryp-
tography, 2:107-125, 1992.

[9] A. Fasbender, D. Kesdogan, 0. Kubitz. Variable
and Scalable Security: Protection of Location
Information in Mobile IP, 46th IEEE Vehicular
Technology Society Conference, Atlanta, March
1996.

[lo] D. Goldschlag, M. Reed, P. Syverson. Hiding
Routing Information, in Information Hiding, R.
Anderson, ed., LNCS vol. 1174, Springer-Verlag,
1996, pp. 137-150.

[Ill C. Giilcu and G. Tsudik. Mixing Email with Ba-
bel, 1996 Symposium on Network and Distributed
System Security, San Diego, February 1996.

[la] A. Pfitzmann, B. Pfitzmann, and M. Waidner.
ISDN-Mixes: Untraceable Communication with
Very Small Bandwidth Overhead, GI/ITG Con-
ference: Communication in Distributed Systems,
Mannheim Feb, 1991, Informatik-Fachberichte
267, Springer-Verlag, Heildelberg 1991, pp. 451-
463.

[13] M . G. Reed, P. F. Syverson, and D. M . Goldschlag.
Proxies for Anonymous Routing, Proc. 12th An-
nual Computer Security Applications Conference,
San Diego, CA, IEEE CS Press, December, 1996,
pp. 95-104.

[14] B. Schneier. Applied Cryptography: Protocols, Al-
gorithms and Source Code in C, John Wiley and
Sons, 1994.

54

http://obscura.obscura.com/'loki/remailer

