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I. INTRODUCTION

Models leak information about their training data. How
much is the privacy risk of releasing such models which are
trained on sensitive data? We focus on measuring information
leakage from models about their training data, using tracing
(membership inference) attacks. Given the released model and
a target data sample, the adversary aims at inferring whether
or not the target sample was a member of the training set. We
use the term tracing attack and membership inference attack
interchangeably [1]], [2]. The attack is evaluated based on the
power (true positive rate) and error (false positive rate), in its
binary decisional task.

Tracing attacks have been extensively studied for summary
statistics, where independent statistics (e.g., mean) of attributes
of high-dimensional data are released. Although initial works
showed the existence of powerful tracing attacks [3l], more
recent work provided theoretical frameworks to analyze the
upper bound on the power of these inference attacks [4],
and their robustness to noisy statistics [[1]. Advanced machine
learning models, such as deep neural networks, have recently
been tested against tracing attacks [2]]. However, their analysis
is limited to empirical measurements of the attack success on
particular data sets.

Contributions: Using the above-mentioned existing
methods, it is possible to reason theoretically about tracing
attacks, yet only for extremely simple models (independent
statistics). In parallel, it is possible to perform empirical trac-
ing attacks against complex models (deep neural networks),
yet without much theoretical analysis on the maximum power
of such attacks. In this paper, we aim at bridging this gap
by providing a theoretical bound on the performance of
tracing attacks against high dimensional graphical models,
i.e. graphical models with many parameters, with focus on
Bayesian Networks.

We use the likelihood ratio test (LR test) as the foundation
of our tracing attack [4]. This enables us to design the most
powerful attack against any probabilistic model. Thus, for
any given error, there exists no other attack strategy that can
achieve a higher power.

Our objective is to identify the elements of a model that
cause membership information leakage, and measure their
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influence. We prove that, for a given model structure, the
potential leakage of the model (the leakage that corresponds to
the most powerful attack for any given error) is proportional to
the square root of model’s complexity (defined as the number
of its independent parameters), and is inversely proportional
to the square root of size of training set. Thus, the theoretical
bound enables us to quantify the potential leakage of a
model before even learning the parameters of the model
on that structure.

II. PROBLEM STATEMENT

We consider a set of n independent m-dimensional data
samples from a population. We refer to this set as the pool.
Given a graphical model structure G, the pool data is used to
train a graphical model, i.e., to estimate the parameters 6 of the
probabilistic graphical model (G, ). This model is released.
Our objective is to quantify the privacy risks of releasing such
models for the members of their training data.

Let us consider an adversary who observes the released
model <G,é>. The objective of the adversary is to perform
a tracing attack (also known as the membership inference
attack) against the released model, on any target data point x:
create a decision rule that determines whether = was used in
the training of the parameters of (G, é) or not, i.e. to classify
x as being in the pool (IN) or not (OUT).

The accuracy of the tracing attack indicates the information
leakage of the model about the members of its training set. We
quantify the attacker’s success using two evaluation metrics:
the adversary’s power (the true positive rate), and his error
(the false positive rate). The power measures the conditional
probability that the attacker classifies « as IN, given that z is
indeed in the pool, i.e. Pr[/N|z € pool]. The error measures
the conditional probability that the attacker classifies « as IN,
given that x is not in the pool, i.e. Pr[IN|x ¢ pool].

III. FRAMEWORK FOR ATTACK DESIGN

Given the released model and the target data point, the
adversary aims at distinguishing between two hypothesis. Each
hypothesis describes a possible world that could have resulted
in the observation of the adversary, where in one world the
target data is part of the training set (pool), while in the other
one the target data is a random sample from the population.



o Null hypothesis (Hoyr): The pool is constructed by draw-
ing n independent samples from the general population.
Parameters 0 of the model (G, é} are trained on the pool
data. Target data x is drawn from the general population,
independently from the pool.

o Alternative hypothesis (Hinx): The pool is constructed
by drawing n independent samples from the general
population. Parameters § of the model (G, ) are trained
on the pool data. Target data x is drawn from the pool.

We use the Likelihood Ratio test to distinguish the two
hypothesis. It is worth emphasizing that according to the
Neyman-Pearson lemma, the LR test achieves the maximum
power among all decision rules with a given error (false
positive rate). The only information we know about the pool is
9, the parameters of the released model learned using the pool
data. Hence, we must calculate these exact same parameters
under null hypothesis (i.e., learn the parameters using general
population). Let 6 be the result of this computation, i.e., the
parameters of G trained on a large reference population.

We calculate LIN as the likelihood of the parameters of G
taking the value §, which is equal to Pr[z; (G, 6)]. Similarly,
we calculate Loyr as the likelihood of the parameters of G
taking the value 6, which is equal to Pr[z; (G, 6)]. Hence, the
log likelihood ratio statistic is computed as follows.

Pr[z; Hn] Pr[z; (G, é>]

The LR test is a comparison of the log likelihood ratio
statistic L(z) with a threshold. If L(z) < threshold, then the
attacker decides in favor of Hyy (rejects Hoyr); otherwise, in
favor of Hoyr (more precisely, in this case, he fails to reject
Hour because there is not enough evidence to support this
rejection in favor of Hyy).

L(z) = log ( M

IV. ASSUMPTIONS FOR THEORETICAL ANALYSIS

To derive our main result about the best achievable power-
error tradeoff, we assume that the released parameters satisfy
the below conditions.

o The value of every released parameter is learned from

a large enough number of samples for the central limit
theorem to hold good.

o The value of every released parameter is non-trivial i.e.,

it is bounded away from O and 1 [4].

These are valid assumptions to make on part of the model
publisher. In fact, the recently published methodology of learn-
ing Bayesian Networks on Cancer Analysis System (CAS)
database in the National Cancer Registration and Analysis
Service (NCRAS) satisfies both the assumptions (they use only
the parameters that are learned using at least 50 samples) [S]].

V. MAIN RESULT: POWER AND ERROR TRADEOFF

Our objective is to compute the maximum power 3 for any
false positive error « of an adversary that observes the released
model (G, 0) which has been trained on a pool of size n. In
our main result, Theorem [I, we show which combinations of
« and [ are possible for the attacker.

Theorem 1. Let 8 and o be the power and error of the LR
test, for the membership inference attack, respectively. Let n
be the size of the pool (model’s training set), and C(G) be
the complexity of the released probabilistic graphical model
(G, 9) defined as the number of independent parameters in 6.
Then, the tradeoff between power and error follows the the
following relation:

c(@)
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where z is the quantile at level 1 — 5,0 < s < 1 of the
Standard Normal distribution.

Proof sketch: To compute /3, the power of the LR test for
the inference attack, for any error «, we need the distribution
of L(xz) when z is drawn from the pool and when z is
drawn from the population. Estimating the exact distribution
of L(x) is a hard problem. Our approach is to approximate
the distributions of L(z), through computing its moments
E(L*),k > 0. To approximate the distribution using its
moments, we use an established statistical principle for fitting
a distribution with known moments: the maximum-entropy
principle. This principle states that the probability distribution
which best represents the current state of knowledge is the one
with largest entropy.

|

VI. INSIGHTS FROM THEOREM 1

Theorem [I| shows that releasing more parameters helps the
attacker, and the amount of improvement depends on how
large the sum already is and there are diminishing returns.
In contrast, increasing the pool size n has the opposite effect
to increasing C: the attack performance becomes worse. Our
result generalizes that of Sankararaman et al. [4] on releasing
independent marginals. The result also implies that the amount
of leakage from a graphical model is decided by the number
of independent parameters in the model. While learning from
the training set, estimation error of a parameter provides the
power for membership inference and in graphical models these
estimation errors are independent for each parameter. Hence
the information leakage about training set can be quantified
by the number of parameters in the graphical model.
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