POSTER: Android IME Privacy Leakage Analyzer

Peng Lo*, Jia-Chi Huo*, Hsu-Chun Hsiao*, Bo Sun®, Tao Ban', Takeshi Takahashif
*National Taiwan university, Taipei, Taiwan
107944039 @csie.ntu.edu.tw, b04502138 @ntu.edu.tw, hchsiao@csie.ntu.edu.tw
National Institute of Information and Communications Technology, Tokyo, Japan
{bo_sun, bantao, takeshi_takahashi}@nict.go.jp

I. INTRODUCTION

An Android input method editor (IME) is a special Android
application that provides a soft keyboard service. Android also
provides extensible methods that enable customization of the
outlook, language or font style of the keyboard. Since users
use IMEs to type everything on Android devices, including
sensitive information such as credit card numbers and pass-
words, the privacy of user input becomes a huge concern. To
further investigate whether these IMEs collect user information
stealthily, we build a tool called IMEAnalyzer to test and
analyze the privacy leakage problem of IMEs.

Previous work [2] [1] on privacy leakage of IMEs analyzed
a small number of IME samples and tested them manually.
Their methods need to be improved because manual testing
is slow and not scalable. Besides, we have observed several
IMEs that update frequently during our experiment. It would
be exhausting if manual testing is needed after every single
update.

However, there are three challenges for automatically an-
alyzing this privacy leakage problem on IMEs. First, the
IME service does not have its own ContentView, so
Android testing frameworks cannot fetch it by View API
like findviewById. Second, we cannot simulate user input
actions simply by using the keycode API provided by An-
droid [3]. The keycode API would bypass IMEs and directly
communicate with the Android operating system thus not
triggering the corresponding functions registered by IMEs.
Third, many IMEs encrypt their network traffic. It is hard to
decrypt the packets content to check if the IMEs send user
input back to the server.

In this work, we present IMEAnalyzer, a system that ana-
lyzes privacy leakage risks of IMEs. Our contributions can be
summarized as follows. First, we build a system to conduct
various test cases and record the reactions of the Android third-
party IMEs, in a fully automated fashion. Second, we propose
our analysis methods to identify the existence of suspicious
or data collection activity by observing the logs and requests
sent by the IMEs. After analyzing the logs, IMEAnalyzer will
generate a list of suspicious IMEs for further research.

II. BACKGROUND AND THREAT MODEL

A. Android Input Method Editor

An IME is a soft keyboard used in Android devices. Android
provides an extensible input method framework for apps to

offer their users with alternative IMEs, which are often called
third-party keyboard apps.

Third-party IMEs, as opposed to default system keyboards,
are thriving with a reason. They often have features that default
keyboards fail to offer, such as support for cool emojis or
various themes. Thus, third-party IMEs tend to grant more
permission. However, once a certain permission is granted, a
bundle of functionalities required that permission would be
available to the IME. It turns out to be more disastrous of an
IME to abuse its privilege than of other Android apps, since
the IME could record everything of the user input.

B. Threat Model

In this paper, we assume that third-party IME developers
could be malicious. The attacker’s goal is to get personal
information of users. The attack model can be divided into
two kinds: keylogging and other privacy leakage. Keylogging
is to get all the characters user type by an IME. Other
privacy leakage consists of collecting the information which is
authorized by the permissions required by the IMEs, such as
contact information, GPS, or SMS. Since a long line of work
has discussed about the privacy leakage problem of Android
apps, we mainly focus on the keylogging problem.

According to what kind of information that a malicious IME
sends back to its server, we classify keystroke keylogging into
two scenarios: Sending all user input, and sending sensitive
data only. Besides, some IMEs only send back the statistical
data, for instance, the frequency of a specific words appear
during user typing. Since many apps claim that they are
collecting statistical information for improving the quality
of user experience and all of the collected information are
differentially private, we consider it out of scope.

1) Sending all user input: The attacker sends all user input
back to the server.

2) Sending sensitive data only: The attacker first analyzes
the contents, removes useless words, and then only sends
sensitive data back. There are two methods the attacker can
recognize sensitive data. First, the attacker uses customize
keywords to filter the content, such as bank’s name, address
or diseases. Whenever the victim types in a keyword, the
attacker sends back the whole paragraph. Second, the attacker
inspects the inputType of EditText field in Android app
to identify and send back the user input, such as password,
credit card number or phone number.



III. SYSTEM DESIGN AND IMPLEMENTATION

IMEAnalyzer includes three components, a testing server, a
client application on the mobile, and two loggers. The analyzer
automatically executes the steps below, and the user should
provide package names of IMEs which are subjected to test.

A. Environment Setup

Before the test starts, IMEAnalyzer sets up two loggers to
collect the information during experiments. One is a system
logger, which contains all the information from Android
Debug Bridge (ADB) logcat. The other is a network traffic
logger, which records network packets by a Mitmproxy server
set up in the same network.

B. Keyboard Layout Reconstruction

As mentioned in Section 1, IME service lacks user interface
to interact with, and this is also one of the major problems
that make it difficult to automate the process of analyzing
IMEs. We solve this problem by getting a key map before
the analysis starts. IMEAnalyzer obtains the keyboard layout
of an IME by running a script on the testing server with the
client app installed. The client app provides an input field and
records the input characters. The script simulates the key touch
function by ADB and finally outputs the coordinate of each
character on the keyboard.

C. Testing Process

With the keyboard layout we gathered in Section 3.2,
IMEAnalyzer can easily find the coordinates of characters
and trigger them. This helps overcome the second challenge
— cannot simulate the actions simply by the keycode API [3].
To interact with IMEs, IMEAnalyzer does not send keycode
to Android OS directly, but instead taps the IME service
interface to trigger the IME to generate keycodes. After the
testing process, it will output the pcap file generated by our
Mitmproxy module which contains the full packet records of
the requests during user typing, such as timestamp, request
URL and other detailed fields.

D. Analysis

In the analysis phase, the system takes the datasets from
the testing process and analyzes them with corresponding user
input data. We provide following functions and separate them
into parts by the different scenarios in our threat model:

1) Sending all user input: In this scenario, we design sev-
eral test modes to distinguish whether and when the attacker
sends packets under different input behaviors.

o Normal typing: We execute typing test described in

Section 3.3 to examine the IME service solely.

o Not typing: We first open the client app and make the
keyboard visible. Then we wait for 15 seconds without
typing anything.

o Typing in fixed frequency: We type words in fixed
frequency, e.g. type one word, wait for 15 seconds
and repeat. Therefore, by looking into the timestamp of
packets and typing, we can observe the relation between
typing word and packet traffic.

2) Sending sensitive data only: In the scenario, we assume
that the attacker only sends data back to server while sensitive
words appear. There are two kinds of methods to detect
sensitive data, which can be mapped to distinct test modes.

o Typing keywords: we hypothesize that some attackers
may use keywords to detect whether users are typing
sensitive information. In this test mode, we will execute
the typing test using given sensitive words.

e Typing in specific inputType: inputType is
an attribute of Android EditText, which is used
to indicate different types of user input such as
password, email, or phone number. We implement an
app that contains 10 kinds of inputType (none,
text, textEmailAddress, textPassword,
textVisiblePassword, textPostalAddress,
textUri, textPersonName, phone, and number)
to observe the result of typing in different inputType
of text input fields.

E. Result

We compared the results of “Normal typing” and “Not
typing” modes to reveal the difference between whether or
not the IME service is used, in terms of number of packets
transmitted. We classified the results into three categories:

1) Probably innocent: Nothing was sent to the Internet
during our experiment.

2) Same Behavior in both situations: The IME apps do send
packets to the Internet during our testing process, but
the number and content of the packets, as well as the
quantities of POST and GET requests are all identical
whether or not the IME service is used.

3) Suspicious: IME apps in this category sent more packets
to the Internet while the IME service is used to input
text.

The purpose of this process is to distinguish suspicious
IMEs from innocent ones and generate a list for further
examination.

IV. CONCLUSION AND FUTURE WORK

In this work, we build the first automated analyzer tailored
for Android third-party IMEs, thereby accelerating the test-
ing process. Future work includes (1) in-depth evaluation of
suspicious MEs, (2) digging into packet contents for further
investigation, and (3) extending to system log analysis.

REFERENCES

[1] J. Chen, H. Chen, E. Bauman, Z. Lin, B. Zang, and H. Guan, “You
shouldn’t collect my secrets: Thwarting sensitive keystroke leakage in
mobile ime apps,” in 24th USENIX Security Symposium (USENIX Security
15), 2015, pp. 657-690.

[2] J. Cho, G. Cho, and H. Kim, “Keyboard or keylogger?: A security analysis
of third-party keyboards on android,” in 2015 13th Annual Conference
on Privacy, Security and Trust (PST). 1EEE, 2015, pp. 173-176.

[3] Keyevent — android developers. [Online]. Available:
https://developer.android.com/reference/android/view/KeyEvent



