Financial Synthetic Data is the New Oil for FinCrime Analytics

Edgar Lopez-Rojas, PhD
FinCrime Analytics Consultant and Researcher

19 May, 2020

Ealax
IT Consulting Services
Agenda

1. Introduction
2. Our Approach
3. Case Study: PaySim
4. Conclusions
5. References
Anti-Money Laundering (AML) Problem

Figure: From United Nations Office on Drugs and Crime (UNODC)
The problem of applying effective controls

- **PRIVACY**: Financial institutions protect the financial information of their customers [2].
The problem of applying effective controls

- **PRIVACY**: Financial institutions protect the financial information of their customers [2].

- **ACCESS**: Third party providers and researchers find it difficult to obtain financial datasets for developing and testing better controls.
The problem of applying effective controls

- **PRIVACY**: Financial institutions protect the financial information of their customers [2].
- **ACCESS**: Third party providers and researchers find it difficult to obtain financial datasets for developing and testing better controls.
- **COSTLY**: Even inside a financial organisation, it is difficult to develop effective controls without going through many cycles of trial and error.
The problem of applying effective controls

- **PRIVACY**: Financial institutions protect the financial information of their customers [2].

- **ACCESS**: Third party providers and researchers find it difficult to obtain financial datasets for developing and testing better controls.

- **COSTLY**: Even inside a financial organisation, it is difficult to develop effective controls without going through many cycles of trial and error.

- **EVIDENCE**: Nearly 90% of the top financial institutions have been fined due to lack of effective controls.
Introduction

Measuring Effective Controls
Introduction

Measuring Effective Controls

NORMAL

TRUE NEGATIVES (TN)

FALSE NEGATIVES (FN)

FRAUD

FALSE POSITIVES (FP)

TRUE POSITIVES (TP)
Agenda

1. Introduction
2. Our Approach
3. Case Study: PaySim
4. Conclusions
5. References
Gartner Hype Cycle for Emerging Technologies, 2019

- Biochips
- AI PaaS
- Autonomous Driving Level 5
- Edge AI
- Explainable AI
- Personalization
- Knowledge Graphs
- Light-Cargo Delivery Drones
- Transfer Learning
- Flying Autonomous Vehicles
- Augmented Intelligence
- Nanoscale 3D Printing
- Decentralized Autonomous Organization
- Generative Adversarial Networks
- Decentralized Web
- AR Cloud
- Immersive Workspaces
- DigitalOps
- Adaptive ML
- Next-Generation Memory
- 3D Sensing Cameras
- Autonomous Driving Level 4
- Graph Analytics

Plateau will be reached:
- less than 2 years
- 2 to 5 years
- 5 to 10 years
- more than 10 years
- obsolete before plateau
As of August 2019

gartner.com/SmarterWithGartner

Source: Gartner
Why Synthetic Data?

There are many benefits of using synthetic datasets:

- **Data is ready** and available.
Why Synthetic Data?

There are many benefits of using synthetic datasets:

- **Data is ready** and available.
- **Privacy** of customers is not affected.
Why Synthetic Data?

There are many benefits of using synthetic datasets:

- **Data is ready** and available.
- **Privacy** of customers is not affected.
- Results can be disclosed to, and **compared by**, other researchers.
Why Synthetic Data?

There are many benefits of using synthetic datasets:

- **Data is ready** and available.
- **Privacy** of customers is not affected.
- Results can be disclosed to, and **compared by**, other researchers.
- Different scenarios can be modeled for **experimentation** using well controlled parameters.
Why Synthetic Data?

There are many benefits of using synthetic datasets:

- **Data is ready** and available.
- **Privacy** of customers is not affected.
- Results can be disclosed to, and compared by, other researchers.
- Different scenarios can be modeled for experimentation using well controlled parameters.
- We can also use it for **Training non experts** in a field to become familiar with diverse scenarios before they ever seen it.
Using synthetic data to develop effective controls

- **Machine Learning (ML)** brings powerful capabilities for classification of malicious behaviour [3].
Using synthetic data to develop effective controls

- **Machine Learning (ML)** brings powerful capabilities for classification of malicious behaviour [3].
- Unfortunately it is very dependent on **quality data** to train the models.
Using synthetic data to develop effective controls

- **Machine Learning** (ML) brings powerful capabilities for classification of malicious behaviour [3].
- Unfortunately it is very dependent on **quality data** to train the models.
- Can we generate a **synthetic version** of the required data? [4].
Using synthetic data to develop effective controls

- **Machine Learning** (ML) brings powerful capabilities for classification of malicious behaviour [3].
- Unfortunately it is very dependent on quality data to train the models.
- Can we generate a **synthetic version** of the required data? [4].
- Is it **good enough**?
Using synthetic data to develop effective controls

- **Machine Learning** (ML) brings powerful capabilities for classification of malicious behaviour [3].
- Unfortunately it is very dependent on quality data to train the models.
- Can we generate a synthetic version of the required data? [4].
- Is it good enough?
- Can we measure the hidden crime? [1, 6]
Why Synthetic Data for ML?

The three biggest drawbacks of using ML for AML are:

- The lack of **labelled data** due to the **hidden crime**.
Why Synthetic Data for ML?

The three biggest drawbacks of using ML for AML are:

- The lack of **labelled data** due to the **hidden crime**.
- the **class imbalance** problem. Criminal data is considerably less than other data.
Why Synthetic Data for ML?

The three biggest drawbacks of using ML for AML are:

- The lack of **labelled data** due to the **hidden crime**.
- the **class imbalance** problem. Criminal data is considerable less than other data.
- The evolving threat of Financial Crime that makes training **datasets obsolete** quite fast.
Agenda

1. Introduction
2. Our Approach
3. Case Study: PaySim
4. Conclusions
5. References
Simulation to generate proper synthetic data

Figure: PaySim Simulator [4]
Privacy preserving method

Diagram:

1. Obtain data sample
2. Extract parameters

OWNER of the data

3. Add fraud parameters
4. Run the Simulator
5. Apply fraud control methods

RESEARCHER

6. Summarise Results
7. Repeat for another fraud scenario
Agenda

1. Introduction
2. Our Approach
3. Case Study: PaySim
4. Conclusions
5. References
Figure: Triple-Helix AML [5]
Financial Synthetic Data is the new Oil for Machine Learning Engines in FinCrime Analytics

- Any questions?
- edgar@ealax.com

Would you like to use Synthetic Data for your FinCrime Analytics?
Agenda

1. Introduction
2. Our Approach
3. Case Study: PaySim
4. Conclusions
5. References

