
Poster: Android App Forensic Evidence Database
Chen Shi, Chris Cheng, Mitchell Kerr, Connor Kocolowski, Emmett Kozlowski

Matthew Lawlor, Jacob Stair, Neil Gong, and Yong Guan
Department of Electrical and Computer Engineering

Iowa State University, Ames, Iowa, USA 50014

I. INTRODUCTION

A recent study of global available apps, AndroZoo [1],
shows that the number of various real-world apps has exceeded
8 million and is still rapidly growing. In contrast, commercial
mobile device forensic tools such as Cellebrite UEFD [2]
supports the profiles of about 6,000 apps, may not function
sufficiently well in assisting real-world digital forensic investi-
gations. Therefore, investigators oftentimes have to use manual
forensic investigation approaches, when mobile devices had
apps installed but not listed in the 6,000 apps supported by
Cellebrite UEFD. However, such manual investigations heavily
rely on investigator’s experience, knowledge and skills, which
are often both time-consuming and error-prone. For example,
a recent investigation on a 5-year-old Nexus 7 tablet with 90
installed apps found to have more than 20,000 files imaged
from the device. It is often impractical to manually inspect
such massive number of files one by one and maintain the
required level of quality and error guarantees such that inves-
tigators can generate trustworthy legal report within certain
required time bounds, which may in turn leads to even more
serious completeness and quality problems.

To tackle the challenges in mobile device forensics, we
are building an ultimately the largest Android App Forensic
Evidence Database (AndroidAED) using the two techniques
developed by our group, namely EviHunter, with the goal
of mitigating the vulnerabilities and reliability concerns of
digital forensic investigations. Through using AndroidAED,
digital forensic practitioners can simply query the database
to find all the possible evidence data (e.g., locations, photos,
call logs, time, etc.) generated by the app, where they are
(e.g., evidentiary file path), and what types of evidence data.
Moreover, consider that the apps installed on the suspect’s
device can be varied because of app’s version, source of
installation (app store), AndroidAED hosts the apps (APKs,
including most recent and past versions of the same app)
collected from various app markets: Google Play [3] and over
50 other app stores. For each collected APK (Application
Package) file, we apply both static EviHunter [4] and dynamic
app analysis tool [5] developed by us, to parse the evidentiary
file paths and the carried evidence data types. The further
development of the static and dynamic app analysis tools are
on-going to handle complex situations caused by obfuscation,

This work was funded by the Center for Statistics and Applica-
tions in Forensic Evidence (CSAFE) through Cooperative Agreement
#70NANB15H176 between NIST and Iowa State University. Contact: Yong
Guan, guan@iastate.edu

App Evidence Database

Input Output

Suspect’s phone 

file system image
Forensic Analysis ReportEvidence Matcher

Query

App Package Name Evidence Location Evidence Type

com.app1

com.app1

com.app2

com.app2

 /data/data/com.app1/files/foo location, time

 /data/data/com.app1/databases/m.sqlite browsing history

 /data/data/com.app2/app_goo/input text input

 /sdcard/Download/app2Calenda time

Fig. 1. A typical usage scenario of AndroidAED for Digital Forensic
Investigation

naive code, and 3rd party libraries. The main contributions of
AndroidAED are summarized as follows:

1) AndroidAED, to the best of our knowledge, is the first
Android app forensic evidence database with highest
precision and coverage in discovering evidence gener-
ated from apps, collected from major app stores.

2) AndroidAED will be made open for public access that
significantly improves the investigation of evidence from
mobile devices, and other security and privacy research
on mobile apps (malware/ransomware, stego-detection,
visual media manipulation (DARPA MediFor)).

3) AndroidAED will be kept updating to provide the most
up-to-date evidentiary data for real-world apps ranging
from very popular to very unpopular ones available from
app stores across the world.

II. ANDROID APP EVIDENCE DATABASE USAGE
SCENARIOS

An automatic forensic analysis approach leveraging An-
droidAED is presented at Fig. 1. The procedure starts from the
physical acquisition of suspect’s mobile device, and thereafter
the extraction of the file system image. Once obtaining the
imaged evidence via Cellebrite or other forensic tools, through
parsing the installed apps information on device, the digital
forensic practitioner can obtain the evidentiary data from
AndroidAED for all the apps installed on that suspect’s device.
Using the query results and the evidence types of interest,
a simple matcher can retrieve the files that have their paths
matched. However, when it comes to the dynamic path issue,
addressed in EviHunter [4], such as the file path contains the
string value of timestamp, a regular expression matching is
required additionally to model the file path.

In addition to the evidentiary file matching, AndroidAED
provides the functionality of bulk query, which allows the user
to query a large number of results satisfying given constraints,



Forward Analysis

Propagation Rules

App Program 

Code
Android APK

Method invoking 

statement

Non-method 

invoking 

statement

Output File Path 

& Evidence Type

Fig. 2. Overview of EviHunter Workflow.

Fig. 3. Single record of the app BeOn PTT.

such as the range of published dates, developer, permission
requirements. Not only the evidentiary data, but also original
APK file, metadata and user comments are included in the
database, making academic study feasible. With the signature
(hash value) of each APK recorded, more newly-defined/found
forensic analysis result can be updated in the future.

III. ANDROID APP EVIDENCE DATABASE SPECIFICATIONS

The more apps we can include in the database, the more
false-negatives we can reduce or avoid in real-world mobile
evidence investigations. In order to provide a more complete
coverage of real-world cases, we have developed app crawlers
for different app markets. At the current stage, we have
completed seven crawlers and 40 more are under develop-
ment. The current supported app markets include: Google
Play Store [3], APKPure [6], Uptodown [7], APKMirror [8],
Aptoide [9] and F-Droid [10]. For each app (distinguished by
its package name), each version’s APK and its corresponding
metadata was archived as single record in our database. Apps’
metadata include app category, description, developer, reviews,
published date, version number, file size, permission require-
ments, minimum system API, and the number of installation.
Additionally, we retrieve the signature file from APK so as
to build the profile and avoid duplication caused by different
sources of downloads. In case of the fabricated signature file,
another pair of signature was generated by our own to mitigate
the potential errors.

We are running a large scale of app collections from various
app stores with the support of our Senior Design Project
teams. As a prototype demo, our AndroidAED has 5,323
apps and 45,745 versions of APKs archived. After acquiring
APK file, two program analysis tools are leveraged to analyze

possible evidentiary files and evidence types. Static program
analysis tool, EviHunter [4], was deployed to model the call
graph and perform codebase analysis to generate the file
path and its carried evidence data type. The workflow of
EviHunter is presented at Fig. 2, after extracting program code
from the given input APK file, it performs forward analysis
for each statement in control flow graph. Through applying
the propagation rules for the visited statements, EviHunter
computes the propagation of variables’ carried evidence types
and string value of file path. Once a sink method, defined
as the methods writing data to the file system, EviHunter
reports the constructed file path and the merged evidence
types from the given position of variable(s). Because of the
existing challenges of defining evidence types, we currently
support “location”, “time”, “visited URLs” and “text input”
these four types. More types can be added once being clearly
defined. Dynamic program analysis tool [5] was utilized to
generate the evidentiary data result, but in different ways.
It starts from installing the APK file on mobile device, and
then a script was programmed to randomly click the items
on the app. Once a tainted data was detected in the file
system, its corresponding evidence type and the actual file
path was reported. Through parsing APK file by these tools,
evidentiary data can be reported and updated into AndroidAED
accordingly. An example of the app’s profile including the
forensic analysis result is shown in Fig. 3.

IV. SUMMARY AND FUTURE DIRECTIONS

Our goal is to build the database AndroidAED that ulti-
mately becomes the largest Android app forensic evidence
database in the world. We are working with crime labs and dig-
ital forensic communities, and expect AndroidAED will have
large societal impacts in significantly improve the efficiency
and reliability of real-world digital forensic casework. We also
keep all the older versions of apps as digital forensic archives
and continue updating the apps and evidence results into the
database everyday. Additionally, we will look into possible
ways of providing in-memory forensic evidence from memory
snapshots or program state reconstruction. We envision that
AndroidAED and apps in it will provide a strong base for
future security, privacy, and forensics research.

REFERENCES

[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” ser.
ACM MSR, 2016.

[2] “Cellebrite ufed ultimate,” 2019. [Online]. Available:
https://www.cellebrite.com/en/products/ufed-ultimate/

[3] “Google play store,” 2019. [Online]. Available:
https://play.google.com/store

[4] C. C.-C. Cheng, C. Shi, N. Z. Gong, and Y. Guan, “Evihunter: Identi-
fying digital evidence in the permanent storage of android devices via
static analysis,” in ACM CCS, 2018.

[5] Z. Xu, C. Shi, C. C.-C. Cheng, N. Z. Gong, and Y. Guan, “A dynamic
taint analysis tool for android app forensics,” in SADFE, 2018.

[6] “Apkpure,” 2019. [Online]. Available: https://apkpure.com/
[7] “Uptodown,” 2019. [Online]. Available: https://en.uptodown.com/
[8] “Apkmirror,” 2019. [Online]. Available: https://www.apkmirror.com/
[9] “Aptoide,” 2019. [Online]. Available: https://en.aptoide.com/

[10] “F-droid,” 2019. [Online]. Available: https://f-droid.org/en/packages/


