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Abstract—Detecting new malware using machine learning has
been increasingly used lately, yet recent research has proven
that deep neural networks report unexpected behavior when
confronted with adversarial examples. Implementing Generative
Adversarial Network (GAN) has proved to be a powerful tech-
nique in the image processing domain and it can be similarly
extended to further domains such as malware evasion. While
the concept is fairly straight forward for image processing,
manipulating portable executable (PE) files can be challenging
given its binary nature and the fact that perturbations can
render the file corrupt. Hence, most of research proposed in
the literature work with limited malware representations and
dismissed the actual files. Our hypothesis is that generating valid
PE files can be more effective for adversarial learning and the
use of machine learning for malware classification. Therefore,
we designed an approach using GAN to generate malware
adversarial examples by injecting byte-level perturbations, which
are able to bypass state-of-the-art classifiers.

Index Terms—Malware, GAN, adversarial learning

I. INTRODUCTION

Generative Adversarial Networks have been extensively
studied since introduced by Goodfellow et al. [1] in 2014.
The idea is to train two models simultaneously, a generator
network that is responsible for generating new examples
whereas a discriminator evaluates the probability that these
examples are real instead of fake examples coming from the
generator. Hence, both have different goals, the generator is
looking for an example to bypass the discriminator while the
discriminator needs to identify which examples are coming
from the generator. Both are optimizing opposite functions in
a zero-sum game.

GANs have been observed to successfully perform in a large
number of domains but most of the work has been done in
image processing including highly realistic representations of
objects and humans faces [2]. Recently, implementing GANs
to generate and divert malicious attacks has attracted more
attention. In DeepDGA [3] the authors attempt to bypass a
detector of web domain generation algorithm that identifies
human-generated domains from its automatically generated
counterparts.

Rigaki et al. [4] proposed to adapt malware communication
to force misclassification of new generation Intrusion Preven-
tion Systems. Thus, they adjusted the code of a malware to
mimic the network traffic of the Facebook chat application.

Their work suggest that GANs can be successful at modifying
malware traffic in order to remain undetectable.

Specifically focused in malware is MalGAN [5], which aims
to generate malicious software that is misclassified as benign.
In this case, the authors implement a surrogate detector, which
will fit the given black box model in order to compute the
gradient that will be used by the GAN to create the adversarial
examples. While the authors report full evasion for almost all
cases, the approach requires strong assumptions that are less
related with real-case scenarios. For instance, it implies that
the adversaries have the ability to fully identify the feature
space. Moreover, it focus mostly on API features, which is a
very extended way to represent portable executable (PE) files,
yet limited to bypass real malware classifiers alone.

Unlike the image domain, adding a random string of per-
turbations on a feature representation of a PE file is likely
to bypass classification, though is not enough to build an
adversarial example.

Therefore, we propose a GAN that is able to work with real
PE files instead of feature representations based on automatic
byte-level modifications [6]. We build on the work of Hu et
al. [5] to implement a generator and discriminator, which will
then be able to inject and analyze real perturbations on files
and deploy adversarial examples.

II. DESIGN

We decided to implement a GAN that is able to inject
automatic byte-level perturbations into PE files [6]. To be
able to generate adversarial examples, we needed to combine
feature representation with real perturbations injected into the
malware examples. In order to achieve that, we define the
noise, as a vector of nine byte-level perturbations. Both the
vector of perturbations as well as the malware file are sent to
the generator to create the adversarial examples. Those along
with benign examples from the ground-truth set are fed into
the black box detector.

Both generator and discriminator are feed-forward neu-
ral networks. As depicted in Fig. 1, the generator receives as
input a feature representation from a malware file m as well
as a vector of byte-level perturbations, noise. As output, an
adversarial example m′ is generated and sent to the black box
classifier along with benign samples b. The black box model
classifies both m′ and b and returns the labels as d(m′, b)



Fig. 1. GAN-based model architecture

along with a feature representation of the malicious and benign
files to be used as input to the discriminator. Afterwards, the
discriminator acts like a surrogate classifier and returns the
probability that the input is malicious, noted as D(m′, b).

As feature representations, we implement a vector of 2350
features including metadata from the header, section, and
import and export tables as well as file strings. These fea-
tures provide an extensive overview of each malware sample.
Finally, the discriminator will need to fit the black box model
in order to reverse-engineer it and create a surrogate model
that behaves similarly.

Unlike regular GAN approaches, the generator will create
random sequence of perturbation comprising nine different
possibilities each injection. Thus, we have a vector of length
10 with nine possibilities each, 910 different combinations of
perturbation vectors could be injected to each of the PE files
to generate adversarial examples.

On the other hand, the discriminator will need to fit a
black box detector. In our case, in order to experience the
behavior of real models, we implement [7] a previously-trained
GBDT, which has state-of-the-art detection rates. Hence, the
capabilities of the surrogate will extend to creating new
adversarial examples that will likely to not only bypass the
black box detector but also cross-evade different classifiers.

III. SOLUTION

We propose a modified version of a malware analysis
environment, which is able to return valid PE binaries as
adversarial examples after all perturbations were injected [6].
In order to generate PE files, we adjusted our generator to be
able to perform valid byte-level perturbations to the malware
sample before sending the output to the black box classifier.

To train the GAN both malware and benign software are
needed. Every malware file is represented as a 2350-feature
vector and then fed to the generator. In order to optimize our
approach, the following steps need to be taken following the
architecture:

(1) Define feed-forward neural network topology based on
the examples, features needed and complexity of the task.
Many nodes will lead to a more complex network that proba-
bly overfits, yet too few can lead to errors since the complexity
is too high for a small number of nodes. Regarding the number
of layers perhaps some of the best pieces of advice on this
matter comes from Yoshua Bengio, where he points out the
importance of keep adding layers until the test error does not

improve anymore [8]. (2) The malware detector is a Gradient
Boosted Decision Tree (GBDT), which acts as a black box
classifier with reported ROC − AUC = 0.993 [7]. While
training a multilayer perceptron in a binary vector resembling
API calls as black box can deploy higher evasion rates,
we speculate important aspects from malware behavior are
overlooked and therefore choose a rich feature representation.
(3) Fit the black box classifier into a feed-forward neural
network in order to be able to update the weights of the
surrogate model and perform gradient descent. (4) Similarly,
update the generator weights with the gradient information of
the surrogate classifier.

IV. CONCLUSION

Recently, generative adversarial networks are shaping the
way adversarial examples are created in a plethora of appli-
cations. Malware adversaries can leverage this technology to
improve malware generation despite of the classifier used in
a real scenario.

Here we present a GAN-based approach, which aims to
generate real malware mutations applying GAN algorithms to
previous malicious software in order to bypass static malware
classifiers.

While evasion rates are almost perfect for simple cases,
preliminary results showed that more complex scenarios,
which resemble the real world more closely, are feasible. We
observed that byte-level perturbations can be combined with
the power of GANs in order to extend the attack vector of
previously detected PE malware.
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