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Abstract—Differential privacy is a mathematical technique
that provides strong theoretical privacy guarantees by ensuring
statistical indistinguishability of individuals in a dataset. It
has become the de facto framework for providing privacy-
preserving data analysis over statistical datasets. Differential
privacy has garnered significant attention from researchers
and privacy experts due to its strong privacy guarantees. In
differential privacy, the standard approach is to add Laplacian
noise to the output of queries. However, the lack of flexibility
due to the dearth of configurable parameters in existing mech-
anisms, and the accuracy loss caused by the noise added have
prevented its widespread adoption in the industry. We propose
new probability distributions and noise adding mechanisms that
preserve (ε)-differential privacy and (ε, δ)-differential privacy.
The distributions can be observed as an asymmetric Laplacian
distribution and a generalized truncated Laplacian distribution.
We show that the proposed mechanisms add optimal noise
in a global context, conditional upon technical lemmas. In
addition, we also show that the proposed mechanisms have
greater adaptability than Laplacian noise as there is more
than one parameter to adjust. The presented mechanisms are
highly useful as they enable data controllers to fine-tune the
perturbation necessary to protect privacy to use case specific
distortion requirements.

Index Terms—Differential Privacy, Asymmetric Laplace Dis-
tribution, Truncated Laplace Distribution

I. INTRODUCTION

Differentially private methods are used to publish or
release statistics of a dataset as a whole while protecting the
sensitive information of individuals in the dataset. Intuitively,
for a given individual who is considering participating in a
dataset, differential privacy requires that an analyst learns
no more information from a dataset that contains this in-
dividuals information than one that does not. Essentially,
differential privacy guarantees that the released results reveal
little or no new information about an individual in the
dataset. Differential privacy guarantees that if a particular
individuals information was to be removed from the dataset,
the released result would not be significantly different. As
no individual sample can affect the output, attackers can
thus not infer the private information corresponding to an
individual sample. Though there has been a myriad of
significant contributions in the field of differential privacy,
it has not yet been adopted by many in the industry due to:
i) lack of flexibility in the mechanisms due to the dearth

of configurable parameters, and ii) concerns over reduced
utility and privacy.

II. OUR CONTRIBUTIONS

We propose new probability distributions and noise adding
mechanisms that preserve (ε)-differential privacy and (ε, δ)-
differential privacy. The distributions can be observed as
an asymmetric Laplacian distribution and a generalized
truncated Laplacian distribution. We show that the pro-
posed mechanisms add optimal noise in a global context,
conditional upon technical lemmas. In addition, we also
show that the proposed mechanisms have greater adaptability
than Laplacian noise as there is more than one parameter
to adjust. This also mitigates the problems pertaining to
inaccuracy and provides better utility in bounding noise.

III. GENERALIZED TRUNCATED LAPLACE MECHANISM

First, we talk about the probability distribution from
which noise can be drawn from to preserve (ε, δ)-differential
privacy. The probability distribution can be viewed as a
generalized truncated Laplace distribution. Such a probabil-
ity distribution is motivated by the symmetrically bounded
Laplace distribution proposed by [1]. The proposed distri-
bution is a more general version as it is asymmetrically
bounded. This is shown in Fig. 1.

To construct such a distribution, we set the privacy pa-
rameter ε and δ. In contrast to most of the existing (ε, δ)-
differential private mechanisms, where ε and δ are the only
two variables in the algorithm design, the general truncated
Laplace distribution allows another parameter to specify the
upper or lower bound of the probability density function.
Therefore, with the additional bounding parameter, not de-
pending on the value of ε or δ, the proposed generalized
truncated Laplace distribution provides more flexibility.

Definition 1. The zero-mean generalized truncated Laplace
distribution has a probability density function f(x) with
scale λ, and is asymmetrically bounded by A and B where
A < 0 < B, defined as:

f(x) =

{
Me−

|x|
λ for x ∈ [A,B]

0 otherwise

where M = 1

λ(2−e
A
λ −e−

B
λ )

.



Fig. 1. Laplacian Mechanism vs Generalized Truncated Laplacian Mech-
anism

Given the global sensitivity, ∆, of the query function
q, and the privacy parameters ε, δ, the General Truncated
Laplacian mechanism A uses random noise X drawn from
the General Truncated Laplace distribution in Definition 4
with the following parameters:

λ =
∆

ε
and A+ ∆ ≤ 0 ≤ B −∆

If |A| ≥ |B|,{
A = λ ln

[
2 + ( 1−δ

δ )e−
B
λ − ( 1

δ )e−
B−∆
λ

]
B = any positive real number satisfy|A| ≥ |B|

;

If |A| < |B|,{
A = any negative real number satisfy |A| < |B|
B = −λ ln

[
2 + ( 1−δ

δ )e
A
λ − ( 1

δ )e
A+∆
λ

] .

Theorem 1. The General Truncated Laplacian mechanism
preserves (ε, δ)-differential privacy.

We plan to prove Theorem 1 using the following two
lemmas.

Lemma 1.

max
(∫ A+∆

A

f(x)dx,

∫ B

B−∆

f(x)dx
)

= δ

for the probability density function f(x), ∆, A and B of the
General Truncated Laplace distribution.

Lemma 2. A mechanism A(D) = q(D) + X that adds a
random noise X drawn from probability distribution P with
probability density function f(x), satisfies (ε, δ)-differential
privacy when

P(S)− eεP(S + d) ≤ δ

holds for any |d| ≤ ∆, and any measurable set S ⊆ R,
where ∆ is the global sensitivity for the query function q.

Remark 1. We claim that

0 < δ ≤ min

(∫ 0

A

f(x)dx,

∫ B

0

f(x)dx

)
.

IV. ASYMMETRIC LAPLACE MECHANISM

The Asymmetric Laplacian mechanism is an ε-
differentially private mechanism that offers better flexibility

in terms of privacy and accuracy than the ubiquitously-
used Laplacian mechanism. The asymmetric Laplacian
mechanism uses random noise drawn from the asymmetric
Laplace distribution. The asymmetric Laplace distribution
is a generalization of Laplace distribution that consists of
two exponential distributions of unequal scale back to back.

We set an asymmetry parameter k, which controls how un-
equal the two exponential distributions are. Therefore, with
an extra asymmetry parameter k, the asymmetric Laplace
probability distribution also provides more flexibility to the
dataset curator in mechanism design. Fig. 2 represents the
probability density functions with different values of k.

The asymmetric Laplace distribution has probability den-
sity function f(x, λ, k) defined as:

f(x, λ, k) =
λ

k + 1
k

{
e
λx
k for x < 0

e−λkx for x ≥ 0
.

Fig. 2. Asymmetric Laplacian Distribution

Given the global sensitivity, ∆, of the query function
q, and the privacy parameter ε, the Asymmetric Laplacian
mechanism A uses random noise X drawn from the asym-
metric Laplacian distribution with scale λ.

Theorem 2. The Asymmetric Laplacian mechanism pre-
serves (max( εk , kε))-differential privacy.

To prove our mechanism preserves (max( εk , kε)) differ-
ential privacy, we need to show that for D1 ∼ D2,

Pr [A(D1) ∈ T ] ≤ emax( εk ,kε) Pr [A(D2) ∈ T ]

for any subset T ⊆ O, where O is the set of all outputs of
the mechanism.

V. CONCLUSION AND FUTURE WORK

Our initial results show that compared to the optimal
Gaussian mechanism, the generalized truncated Laplacian
mechanism reduces the noise power and noise amplitude
across all privacy regimes. We plan to explore flexible and
optimal differentially private mechanisms that merge more
than one probability distribution.
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