
Poster: Perceived Adversarial Examples
Yanmao Man, Ming Li

Dept. of ECE, University of Arizona
{yman, lim}@email.arizona.edu

Ryan Gerdes
Dept. of ECE, Virgina Tech.

rgerdes@vt.edu

Abstract—Adversarial examples in deep learning were first
discovered for the digital domain and later effected in the physical
domain. In this work, we demonstrate adversarial examples in the
perception domain; i.e., adversarial examples that are introduced
by compromising the sensing mechanism of an image sensor.
Our proposed attack relies on the injection of electromagnetic
interference in a remote manner, and does not require physical
modifications to the object, which makes the attack easier to
launch and harder to detect.

Index Terms—Deep Learning, Adversarial Examples, Sensing
Mechanism

I. INTRODUCTION

Deep neural networks (DNN) [1] have been successfully
applied to various tasks such as image recognition, natural
language processing, etc. Recently, multiple researchers from
ML/security communities have introduced the concept of
adversarial examples (e.g., [2], [3]) whereby images are
perturbed in slight ways that cause DNN-based object classifiers
to misclassify the contents of the images. This can lead to
severe consequences when DNNs are deployed for safety-
critical autonomous platforms [4].

Existing attacks mainly target either digital domain or
physical domain. See Figure 1 for their differences. For digital
domain attacks, the adversarial perturbation is directly applied
to digital images [3]. In physical domain attacks, objects of
interest are modified to cause misclassification, e.g., putting
stickers on a stop sign [4].

The drawbacks of physical modifications are that they may be
noticeable to human observers and they may cause damage to
the object permanently. Also, it may not be easy to gain physical
access to the object in many cases. To address these issues, we
propose a new class of attacks that target the perception domain
in which the adversary remotely affects the sensing mechanisms
of the sensor that is used to acquire the image (e.g., a camera
in this work, or signal transceivers, LiDAR sensors, etc.). The
adversary is equipped with an electromagnetic signal generator,
such as a light source, that emits EM signals (light) which will
interfere with the targeted sensor so that the captured signals
(images) will be altered and then misclassified.

The main challenge of realizing perception domain attacks is
that, unlike two other types of attacks, the injected interference
signals are often difficult to control as they exhibit randomness
due to variability of the signal sources and channel effects,
thus the adversary is not able to manipulate each pixel
deterministically or precisely.

This work is supported in part by NSF grants CNS-1801402, CNS-1410000,
and CNS-1801611.

Camera STOPSTOP

Physical domainDigital domain Perception domain

E.G, Carlini & Wagner etc. E.G., Eykholt et al. etc.This work

Digital images Object of interestSensing mechanism

Adversaries with

EM devices,

e.g., light sources

Light
01001

Figure 1: Three categories of attacks.

To address this challenge, we first find the optimal random
noise for three RGB channels, and secondly we realize it in
the perception domain. In order to find the optimal random
noise, we develop a framework that determines the optimal
parameters of the noise distributions from which the noise
will be drawn. For the second step, the challenge is how to
generate the actual noise physically such that the end-to-end
noise captured by the imager will affect the captured image as
we expect. We conduct a preliminary real-world experiment to
demonstrate that it is in fact feasible to realize our attacks in
the perception domain.

II. SYSTEM AND THREAT MODEL

We denote a neural network as y = fθ(x), where x ∈
Rw×h×3 (width, height and RGB three channels) is the input
image, y ∈ Rm is the output vector, and θ is the parameters of
the network (which is fixed thus we omit it for convenicence).
The classification result is C(x) = argmaxi yi. Also, the
inputs to the softmax layer are called logits and denoted as
Z(x). An adversarial example is denoted as x′, where x′ =
x + δ. Here, δ is slight, additive noise that has the same
dimensionality with x. Given a benign image x and a target
label t, an adversary wants to find a small δ such that t =
C(x+ δ), i.e., targeted attacks.

We assume that the adversary has access to the target neural
network f , including the architecture (hyperparameters) and the
well-trained, fixed parameters θ, i.e., we assume a white-box
threat model. The adversary has access to the testing dataset
only. Moreover, the adversary is unable to manipulate each
pixel individually or deterministically; instead, the adversary
wants to affect each channel independently with random noise
drawn from the optimal adversarial distributions, which are
calculated based on the testing dataset, rather than the images

of objects that are later fed to the network because the adversary
does not have access to those images.

III. OPTIMAL ADVERSARIAL DISTRIBUTIONS

Consider the noise δ captured by the imager to be a random
vector, whose elements are drawn from some independent
distributions. We assign an independent Gaussian distribution
to each RGB channel, i.e., δ = [δR, δG, δB], where δ{R,G,B} ∈
Nw×h, and δR ∼ N (µR, σ

2
R), δG ∼ N (µG, σ

2
G), and δB ∼

N (µB , σ
2
B). Here, µ{R,G,B} and σ{R,G,B} are the means and

the standard deviations of the three Gaussian distributions,
respectively.

We measure the magnitude of δ using the expectation of its
Lp norm, i.e., E(‖δ‖p) = p

√
n(|µR|+ |µG|+ |µB |). Following

the formulation in [3], we have our optimization problem

minimize
µ{R,G,B},σ{R,G,B}

E(‖δ‖p) + σ + c · E(g(x′)), (1)

where x′ = [tanh([xR+ δR, xG+ δG, xB + δB] + 1)]/2 being
a random vector, E(g(x′)) = maxi 6=t{E(Zi(x′))}−E(Zt(x′))
measuring the likelihood of succeeding the attack, and c
balances which objective is more important, making the noise
small on average (by µ) and at peak (by σ), or making the
attack succeed. Unfortunately, due to the complexity of neural
networks computation, E(g(x′)) is very hard to express analyt-
ically; we therefore use Monte Carlo methods to approximate
it: Ê(g(x′)) =

∑r
j=1

[
maxi 6=t

{
Zi(x

′
j)
}
− Zt(x′j)

]
, where r

is the number of trials, and x′j is the perturbed image at j-th
trial.

We use the Adam Optimizer [5] to solve our problem. For
every iteration the algorithm tunes µ and σ so that the noise
drawn from N (µ, σ2) is more likely to fool the neural network
to classify x′ as the target class t.

Because each channel has noise added to it of a different
mean, the resulting adversarial example x′ looks like as though
a color filter has been applied (see Sec. IV).

IV. ATTACK IMPLEMENTATION AND EVALUATION

The architecture of the targeted neural network was the same
as the one in [3]: four convolutional layers followed by two
fully-connected layers. We omit the details of the network
due to the page limit. We implemented the network using
TensorFlow and trained it with the distillation defense [6]
using the CIFAR-10 dataset, and it achieved 80% accuracy.

To evaluate our attacks in the digital domain, for each pair
of a benign image and a target class, we solved Eq. (1) for the
noise distributions. We set r = 100 and c = 100. Resulting
adversarial examples are shown in Fig. 2, where few of them
were best-effort results (unsuccessful examples). Overall, the
attack success rate was 83% among 10×9×10 = 900 instances
(there are ten classes and for each class, ten benign images were
randomly chosen). This means optimal adversarial distributions
are actually able to be used to generate successful adversarial
examples.

For perception domain, we implemented our attacks in the
real-world using a projector as the noise source. See Fig. 3b
for the setup from the camera’s point of view. We took Fig. 3a
as a benign image and “frog” as the target label into Eq. (1)

Figure 2: Targeted adversarial examples. The image at i-th row
and j-th column is an example that was perturbed from class
i towards class j. When i = j, it is a benign image.

(a) A “ship” (b) Flare and “blooming” effects (c) A “frog”
Figure 3: (a) was displayed on a laptop shown in (b). (c) was
cropped from (b).

and then we calculated the optimal random noise distribution
of each RGB channel. We generated the noise (looked mostly
green), using the projector to shine the noise directly to the
camera. Due to the flare effect and the “blooming” effect (see
Figure 3b), the benign image was overlapped with the green
noise. As a result, Fig. 3a was misclassified as a “frog”. We
also did an experiment on traffic signs. Results (shown in
the poster) showed that we were able to perturb a Pedestrian
Crossing sign into a Signal Ahead sign.

V. CONCLUSION AND FUTURE WORK

We proposed a class of adversarial examples that target the
perception domain, where the adversary attacks the camera
remotely with random noise so that the captured image is mis-
classified. Our remote attacks can be conducted with portable
devices and they are not easy to be detected. In the future, we
will systematically evaluate our physical implementation of the
noise generator and also make the attack less conspicuous.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, 2015.
[2] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” in ICLR, 2014.
[3] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural

networks,” in S&P. IEEE, 2017, pp. 39–57.
[4] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,

A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in CVPR, 2018, pp. 1625–1634.

[5] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.

[6] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as
a defense to adversarial perturbations against deep neural networks,” in
S&P. IEEE, 2016, pp. 582–597.

	Introduction
	System and Threat Model
	Optimal Adversarial Distributions
	Attack Implementation and Evaluation
	Conclusion and Future Work
	References

