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Abstract—Modern computer peripherals are diverse in their
capabilities and functionality, ranging from keyboards and print-
ers to smartphones and external GPUs. In recent years, periph-
erals increasingly connect over a small number of standardized
communication protocols, including USB, Bluetooth, and NFC.
The host operating system is responsible for managing these
devices; however, malicious peripherals can request additional
functionality from the OS resulting in system compromise, or
can craft data packets to exploit vulnerabilities within OS
software stacks. Defenses against malicious peripherals to date
only partially cover the peripheral attack surface and are limited
to specific protocols (e.g., USB). In this paper, we propose
Linux (e)BPF Modules (LBM), a general security framework
that provides a unified API for enforcing protection against
malicious peripherals within the Linux kernel. LBM leverages
the eBPF packet filtering mechanism for performance and
extensibility and we provide a high-level language to facilitate the
development of powerful filtering functionality. We demonstrate
how LBM can provide host protection against malicious USB,
Bluetooth, and NFC devices; we also instantiate and unify existing
defenses under the LBM framework. Our evaluation shows that
the overhead introduced by LBM is within 1 μs per packet
in most cases, application and system overhead is negligible,
and LBM outperforms other state-of-the-art solutions. To our
knowledge, LBM is the first security framework designed to
provide comprehensive protection against malicious peripherals
within the Linux kernel.

I. INTRODUCTION

Computer peripherals provide critical features to facilitate

system use. The broad adoption of computers can be traced

not only to the reduction in cost and size from mainframe

to microcomputer, but to the interactivity afforded by devices

such as keyboards and mice. Displays, printers, and scanners

have become integral parts of the modern office environ-

ment. Nowadays, smartphones and tablets can not only act

as peripherals to a host computer, but can themselves support

peripherals that attach to them.

The scope of functionality that peripherals can contain is

almost limitless, but the methods of connecting them to host

computers have converged to a few select standards, such

as USB [10] for wired connections and Bluetooth [15] for

wireless. As a result, most modern operating systems provide

support for these standards (and the peripherals that use them)

by default, implementing the respective software stacks inside

the kernel and running different device drivers to support

various classes of peripherals.

However, with this virtually unconstrained functionality

comes the threat of malicious devices that can compromise

computer systems in myriad ways. The BadUSB attack [62]

allows attackers to add functionality allowed by the USB pro-

tocol to device firmware with malicious intent. For example,

a BadUSB flash drive presents not only expected behavior

of a storage device when plugged into a computer, but also

registers keyboard functionality to allow it to inject malicious

keystrokes with the aim of gaining administrative privilege.

Other examples of malicious USB functionality include charg-

ers that can inject malware into iOS devices [51], or take

control of Android devices via AT commands [78]. Bluetooth

peripherals are also vulnerable: the BlueBorne attack [11]

allows remote adversaries to craft Bluetooth packets that will

cause a kernel stack overflow and enable privilege escalation,

while BleedingBit [12] exploits a stack overflow within the

Texas Instruments Bluetooth Low Energy (BLE) stack. We

observe that malicious peripherals launch attacks in one of two

ways, either by (1) sending unexpected packets (I/O requests

or responses) to activate extra functionality enabled by the

operating system, or by (2) crafting specially formed packets

(either legitimate or malformed) to exploit vulnerabilities

within the operating system’s protocol software stack.

Current defenses against malicious peripherals are not

comprehensive and are limited in scope. USBFILTER [79]

applies user-defined rules to USB packet filtering within the

Linux kernel, but fails to prevent exploitation from malformed

packets. USBFirewall [43], on the other hand, provides bit-

level protection by parsing individual incoming USB packets,

but offers limited support for user-defined filtering rules. Apple

recently added USB restricted mode in iOS 11.4, shutting

down USB data connections after the device stays locked for

an hour [84], but this restriction can be bypassed [2]. Not only

do these defenses lack comprehensive coverage, but they often

focus primarily or solely on USB, providing no protection

against peripherals using other interfaces.

In this paper, we propose Linux (e)BPF Modules (LBM),

a general security framework that provides a unified API for

enforcing protection against malicious peripherals within the

Linux kernel. LBM requires only a single hook for incoming

and outgoing peripheral data to be placed in each peripheral

subsystem, and modules for filtering specific peripheral packet

types (e.g., USB request blocks or Bluetooth socket buffers)



can then be developed. Importantly for performance and

extensibility, we leverage the Extended BSD Packet Filter

(eBPF) mechanism [25], which supports loading of filter

programs from user space. Unlike previous solutions, LBM is

designed to be a general framework suitable for any peripheral

protocol. As a result, existing solutions such as USBFIL-

TER and USBFirewall can be easily instantiated using LBM.

Moreover, new peripherals can be easily supported by adding

extensions into the LBM core framework. To demonstrate the

generality and flexibility of LBM, we have fully instantiated

USBFILTER and USBFirewall using the LBM framework,

developed hooks for the Bluetooth Host Control Interface

(HCI) and Logical Link and Adaptation Protocol (L2CAP)

layers, and demonstrated a hook mechanism for the Near-Field

Communication (NFC) protocol. Our evaluation shows that the

general overhead introduced by LBM is within 1 μs per packet

across different peripherals in most cases; the application and

system benchmarks demonstrate a negligible overhead from

LBM; and LBM has a better performance when compared to

other state-of-the-art solutions.

We summarize our contributions1 below:

• Design and implement LBM as a general security frame-
work to defend against malicious peripherals. The LBM

core is designed as a high-performance packet filtering

framework based on eBPF. LBM hooks are provided to

extend support for different peripheral subsystems.

• Develop a high-level filter language to facilitate writing
LBM rules. Users can write LBM rules in a high-level,

PCAP-like language to apply different policies to periph-

eral data packets, to avoid having to write filters in the

complex, low-level BPF assembly language. Our user-

space LBMTOOL utility translates LBM rules into eBPF

instructions and loads them into the LBM core.

• Develop support for USB, Bluetooth, and NFC in LBM.
We extend LBM to support multiple peripheral protocols

by exposing useful protocol fields to the user space and

extending LBMTOOL to recognize LBM rules for differ-

ent peripherals. We demonstrate LBM’s extensibility by

unifying and fully implementing the USBFILTER and

USBFirewall defenses under the LBM framework.

• Evaluate performance and analyze coverage against pe-
ripheral attacks. By applying the appropriate LBM rules,

we are able to defend against all known peripheral

attacks. Our micro-benchmark shows that the general

overhead introduced by LBM is within 1 μs in most

cases, and the macro-benchmark shows that LBM has

better performance than other solutions, with negligible

impact on application throughput.

The remainder of the paper is structured as follows: Sec-

tion II provides background on peripheral security and BPF;

Section III presents our security model and goals alongside the

design of our solution; Section IV details the implementation

of our design in both kernel and user spaces; Section V eval-

uates LBM through case studies and benchmarks; Section VI

1Available at https://github.com/FICS/lbm.

discusses additional dimensions of our work; Section VII

explains limitations of our work; Section VIII summarizes

related work; and Section IX concludes.

II. BACKGROUND

A. Peripheral Security

USB. The Universal Serial Bus (USB) has been around since

1996 with the release of the version 1.0 specification [23].

USB emerged to provide a single, ubiquitous means to connect

peripherals that would support a variety of applications with

different performance requirements. Since its inception, USB

has undergone many revisions (1.1, 2.0, 3.0, 3.1, and most

recently 3.2 and Type-C). The set of supported peripheral

devices expanded with each version, and the current USB

version 3.2 [10] supports a data transfer rate of 20 Gbits per

second, much improved over the 12 Mbits per second of v1.0.

Numerous attacks have been demonstrated by vulnerable

or malicious USB peripherals. BadUSB [62] attacks work

by altering the firmware of USB devices so they register as

deceptive device types when plugged into a machine. For

example, a USB mass storage device could masquerade as

a keyboard to gain the ability to inject malicious keystrokes.

A malicious USB charger can inject malware into iOS de-

vices [51] or take full control of Android devices via AT

commands [78]. MouseJack [61] affects wireless mice and

keyboards that communicate with a computer through a USB

dongle. An adversary may inject keystrokes by spoofing either

a mouse or keyboard, and in some cases may even pair a fake

keyboard with a victim’s dongle.

More vulnerabilities with the USB protocol stack and

device drivers have been identified with the help of tools

such as FaceDancer [30] and syzkaller [31]. On one hand,

these vulnerabilities are mostly implementation bugs within

the software stack. On the other hand, malicious USB

devices can exploit these vulnerabilities to compromise the

whole system by sending out specially-crafted USB packets.

For a comprehensive exploration of the variety of available

USB attack vectors, we refer readers to Tian et al.’s study [80].

Bluetooth. Just as USB dominates wired connections for pe-

ripherals, Bluetooth [15] is the de facto standard for connecting

peripherals wirelessly. Being a short-distance Radio Frequency

(RF) technology, Bluetooth usually allows data transmission

within 10 meters. After Bluetooth 4.0, Bluetooth Low Energy

(BLE) and Bluetooth Mesh were introduced to support lower-

power consumption devices (e.g., IoT) and sensor networks.

Bluetooth, like USB, is also susceptible to a wide variety

of attacks [81] due to software implementation vulnerabilities

and malicious Bluetooth peripherals. BlueBug [52] allows an

attacker to send AT commands to take control of the victim’s

phone, from e.g., a malicious Bluetooth headset. Blueprint-

ing [38] and BlueBag [21] identify and collect statistics on

all discoverable devices in the area. BlueSnarf and BlueS-

narf++ [52] allow an adversary to acquire files from a victim

device without being authenticated. BlueDump [53] causes a

victim device to dump its stored link keys associated with



connection events. CarWhisperer [37] allows an adversary to

eavesdrop on and inject audio into a car over Bluetooth. Blue-

Borne [11] attacks craft specially-formed Bluetooth packets to

exploit certain vulnerabilities within the software stack imple-

mentation, causing e.g., privilege escalation. BleedingBit [12]

attacks exploit another stack overflow within TI’s BLE stack.

While pairing is used to prevent unidentified devices

from being connected via Bluetooth, many attacks happen

before the pairing procedure. Also, pairing does not work for

simple devices without a means to input PINs. Unlike the

case for USB, there is no available systematic solution that

defends against malicious Bluetooth peripherals at all. The

most effective defense seems to be turning off Bluetooth or

physically unplugging the Bluetooth module.

NFC. Near Field Communication (NFC) [60] is another short-

range wireless communication protocol based on RFID tech-

nology. The operation range is usually within 4 to 5 centime-

ters. Smartphones (e.g., Androids and iPhones) commonly use

NFC as a quick means to exchange information, such as when

downloading a poster or making a payment.

Similarly, these NFC software stacks are also vulnerable. A

NFC feature that unknowingly invokes a Bluetooth connection

can install malware on phones [83]. “Exploring the NFC

Attacking Surface” [56] lists four possible attacks enabled by

bugs within the Android and N9 software stacks. A recent

bug within the Linux kernel NFC software stack [13] allows

a malicious NFC device to inject a malformed packet to

launch out-of-bounds writes in kernel memory.

In Summary. Regardless of wireline or wireless, these pe-

ripheral communication protocols often refer to their commu-

nication unit as a “packet” (e.g., USB packets or Bluetooth

packets). The OS further instantiates the abstraction of these

“packets” within the context of a given I/O subsystem. This

provides us an opportunity to treat these peripheral security

issues as we would treat networking security issues: by build-

ing firewalls for these peripherals and applying rules to filter

unwanted (malicious) packets.

B. BPF/eBPF

The BSD Packet Filter (BPF) [54] is a high-performance

RISC-based virtual machine running inside the OS. Since its

creation, it has been used as a standard way for packet filtering

in the kernel space. The most well-known BPF customer

might be tcpdump, which compiles filtering rules into BPF

instructions and loads them into the kernel via socket APIs.

Extended BPF (eBPF) [25], [45] is a new ISA based on the

classic BPF. Compared to the old ISA, eBPF increases the

number of registers from 2 to 10 and register width from 32-

bit to 64-bit. eBPF also introduces a JIT compiler to map eBPF

instructions to native CPU instructions, including x86, x86-64,

ARM, PowerPC, Sparc, etc. A new syscall bpf, added since

Linux kernel 3.18, supports loading eBPF programs from the

user space.

Besides the ISA extensions, eBPF provides new ways to

communicate between user and kernel spaces, and to call

kernel APIs within BPF programs [67]. eBPF maps are a

generic data structure to share data between the user/kernel

spaces. A typical usage is to have the kernel update certain

values (e.g., the number of IP packets received) inside the

map with the user space program picking up the change.

BPF helpers are a special call to bridge the eBPF programs

and kernel APIs. The newly added CALL instruction can

be used to trigger predefined BPF helpers, which usually

wrap up kernel APIs to implement some functionalities that

cannot be achieved by eBPF instructions themselves. eBPF

also includes a verifier, which checks the safety of a given

eBPF program via a directed acyclic graph (DAG) check

(to ensure bounded execution) and by checking for memory

violations. The purpose of this verifier is to make sure that an

eBPF program cannot affect the kernel’s integrity.

III. DESIGN

We first describe the security model we consider, outline

the goals we set for our solution, and finally show how we

achieve these goals through different aspects of the design.

A. Security Model

We consider attacks from peripherals to require physical

access to the host machine (e.g., plugging into the USB port)

or use wireless channels to connect with the host (e.g., over

Bluetooth). These malicious peripherals usually try to achieve

privilege escalation by claiming unexpected functionalities

(e.g., BadUSB [62]), or exploiting the kernel protocol stack via

specially crafted packets (e.g., BlueBorne [11]). Note that we

do not consider DMA-based attacks [74], where IOMMU [41]

is needed to stop arbitrary memory writes from the peripheral.

Our Trusted Computing Base (TCB) is made up of the

Linux kernel and the software stack down below. We assume

trusted boot or measured boot, such as Intel TXT [32], is

deployed to protect system integrity. We also assume Man-

datary Access Control (MAC), such as SELinux [69], is being

enforced across the whole system.

B. Goals: Beyond A Reference Monitor

The first three goals we set (G1 through G3) are drawn from

the classic reference monitor concept [7], and are needed to

build a secure kernel. The remaining goals (G4 through G7)

draw inspiration from existing security frameworks, such as

Linux Security Modules (LSM) [86], and consider practical

issues surrounding usage and deployment.

G1 Complete Mediation – For each kind of supported

peripheral, we need to guarantee that all inputs from the

device and all outputs from the host are mediated.

G2 Tamper-proofness – Assuming the system TCB is not

compromised, we need to defend against any attacks

originating from outside the TCB.

G3 Verifiability – While a whole-system formal verification

may be infeasible, we should mandate formal guarantees

for security-sensitive components.



USB 
Subsys

Bluetooth 
Subsys

NFC 
Subsys

LBM 
TX

Peripheral Subsystems

BPF/eBPF

lbm1

LBM
 

Fram
ew

ork

lbm2

lbm3

lbmtool LLVM/
Clang

USB Packet BT Packet NFC Packet

User Space

Kernel Space

LBM 
RX

LBM 
RX

LBM 
RX

LBM 
TX

LBM 
TX

 bpf syscall  lbm sysfs

if usb.devnum 
== 7: drop

Figure 1: LBM Architecture.

G4 Generality – The solution should provide a general

framework that seamlessly incorporates the features of

existing security solutions.

G5 Flexibility/Extensibility – The addition of support for

new kinds of peripherals should be a straightforward and

non-intrusive process.

G6 Usability – The solution should be easy to use.

G7 High Performance – The solution should introduce

minimal overhead.

Bearing these goals in mind, we design the Linux (e)BPF
Module (LBM), as shown in Figure 1.

Within the kernel space, LBM interposes different periph-

eral subsystems (such as USB, Bluetooth, and NFC) at the

bottom level, covering both TX and RX paths. Before a packet

can be sent out or reach the corresponding protocol stack

for parsing, LBM applies filtering rules (eBPF programs)

and loaded LBM kernel modules to the packet for filtering.

In the user space, we introduce a new filter language for

peripherals. Filters written in this language are compiled into

eBPF programs and loaded into the kernel by LBMTOOL.

In short, LBM provides a general peripheral firewall frame-

work, running eBPF instructions as the packet filtering mech-

anism. We instantiate LBM on USB, Bluetooth, and NFC to

cover the most common peripherals.

C. LBM Kernel Infrastructure

We design LBM as a standalone kernel component/subsys-

tem statically linked into the kernel image. We rely on TPM

and IMA [65] to guarantee the boot time integrity of the kernel

and load time integrity of user-space dependencies. We further

use MAC such as SELinux [69] to make sure LBM cannot

be disabled without root permission. Since LBM cannot be

unloaded/reloaded as a kernel module, disabled, or bypassed

from the user space, we achieve G2 – tamper-proofness.

For each kind of peripheral that LBM supports, we need to

place “hooks” on both the TX and RX paths to mediate each

packet being sent to and received from the peripheral. While

USB Peripherals

Host Controller Device Driver

LBM TX LBM RX

USB Core

Storage Driver Input Driver Video Driver

Host Controller Device

Figure 2: LBM hooks inside the USB subsystem.

different peripheral subsystems may have different structuring

of their software stack architectures within the kernel, we

follow two general rules for the placement of LBM hooks.

First, these hooks should be placed as close as possible to

the real hardware controlling the corresponding peripherals.

This helps reduce the potential impact from vulnerabilities

within the upper layer of the software stack (e.g., by packets

bypassing the hooks). Second, these hooks should be general

enough without relying on the implementation of certain

hardware. As a result, we place LBM hooks beneath the core

implementation of a peripheral’s protocol stack, and above a

specific peripheral controller driver.

Take USB as an example. As shown in Figure 2, LBM

hooks are deployed just above the host controller device and its

driver, which communicates with USB peripherals directly. At

the same time, the hooks are deployed below the USB core and

other USB device drivers, preventing third-party USB drivers

from bypassing these hooks. Through this careful placement

of LBM hooks, we achieve G1 – complete mediation.

Since LBM allows the loading of eBPF programs into the

kernel space and executing of these programs for peripheral

packet filtering, special care is needed to make sure these

programs are not introducing new vulnerabilities into the

kernel or bypassing security mechanisms enforced by the

kernel. We leverage the eBPF verifier [70] to examine each

eBPF program before it can be loaded. Unlike normal eBPF

programs (mainly used by the networking subsystem) loaded

by the bpf syscall, we forbid both bounded loop [26] and

packet rewriting (e.g., changing the port number of a TCP

packet) in LBM. Once a program passes verification, we can

be sure that the program halts after a limited number of state

transitions, that each program state is valid (e.g., no stack

overflow occurs), and that no instruction changes the kernel

memory (besides the program’s own stack). We achieve G3 –

verifiability for programs executed by LBM.

LBM draws inspiration from state-of-the-art solutions in-

cluding USBFILTER [79] and USBFirewall [43], and im-

proves on them, as shown in Table I. Similarly to USB-

FILTER, LBM supports kernel module plugin. As depicted

in Figure 1, different LBM kernel modules (e.g., lbm1-lbm3)

can be plugged into the LBM framework and essentially hook

into the TX and/or RX paths for different peripherals. As we

will later show in Section V-A, it takes less than 20 lines of



Feature USBFILTER USBFirewall LBM
Plugin Modules � �
Stack Protection � �

User-defined Rules � �
TX Path Mediation � �
RX Path Mediation � �
Multiple Protocols �

Table I: LBM compared to USBFILTER and USBFirewall.

LBM unifies USBFILTER and USBFirewall, providing a su-

perset their properties via extensible protocol support.

Feature USBFILTER USBFirewall LBM
Filter Mechanism C C eBPF
User-space DSL CNF N/A PCAP DSL

Acceleration Short Circuit N/A JIT

Table II: LBM vs. USBFILTER vs. USBFirewall, specifically

with respect to filter design of each.

change to convert a LUM (Linux USBFILTER Module) into

an LBM module. To protect protocol stacks from malformed

packets, we derive packet field constraints from specifications.

Rather than translating these constraints into C and compil-

ing them into the kernel image like USBFirewall does, we

transform them into eBPF programs and load them on the

RX paths for malformed packet filtering. In short, we achieve

G4 – generality, by incorporating all the features provided

by existing solutions. Additionally, we extend support beyond

USB to other peripherals, such as Bluetooth and NFC.

To ease support for a new kind of peripheral, we design a

unified API used by different subsystems to hook into LBM:

int lbm_filter_pkt(
int subsys, int dir, void *pkt)

subsys determines the index of a certain peripheral subsys-

tem (e.g., 0 for USB and 1 for Bluetooth); dir specifies the

direction of the I/O path: TX or RX; and pkt points to the

core kernel data structure used to encapsulate the I/O packet

depending on different subsystems, (e.g., urb for USB and

skb for Bluetooth). Once this LBM hook is placed into a

peripheral subsystem, developers can write an LBM module to

filter packets using typical C programming, by implementing

the TX and/or RX callbacks:

int (*lbm_ingress_hook)(void *pkt)
int (*lbm_egress_hook)(void *pkt)

A more useful extension is to expose some packet fields to

the user space, and implement BPF helpers as backends to

provide data access to these fields if needed (as we have done

for USB and Bluetooth). As a result, LBMTOOL can generate

a new dialect for the new peripheral based on a PCAP-like

packet filtering language. Users can then write filtering rules

as they would for tcpdump instead of directly crafting eBPF

instructions. Through the design of the LBM framework and

the introduction of a domain specific language (DSL), we

achieve G5 – flexibility/extensibility.

Besides the verifiability of eBPF programs, we choose eBPF

as the filtering mechanism in LBM to strike a balance between
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CSTExpr
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Figure 3: The flow of LBMTOOL in compiling LBM rules to

eBPF programs and loading them into the running kernel.

performance and programmability. As shown in Table II, both

USBFILTER and USBFirewall rely on hardcoded C compiled

into the kernel to implement the filter mechanism. Although

USBFirewall leverages the Haskell description of the specifi-

cation to generate the C code, it lacks support for a user-space

DSL. USBFILTER only supports a limited DSL following the

conjunctive normal form (CNF). As we will elaborate in the

following section, LBM DSL is more expressive and powerful.

Instead of implementing a filtering mechanism directly, LBM

builds an eBPF running environment for peripherals and

executes eBPF programs as filters. Thanks to JIT compilation

of eBPF code, LBM is able to run filters as fast as native

instructions; thus, we achieve G7 – high performance.

D. LBM User Space

To interact with an LBM-enabled kernel we design LBM-

TOOL, a frontend utility to interact with the LBM kernel space.

Its primary purpose is to compile, load, and manage LBM

programs resident in the kernel. To create a unified, simple,

and expressive way of describing peripheral filtering rules, we

develop a custom Domain Specific Language (DSL) modeled

on Wireshark and tcpdump filter expressions. These LBM

rules are processed by LBMTOOL using a custom compiler that

outputs eBPF filter programs, as shown in Figure 3. Compiled

filters are loaded into the LBM framework via an extension to

the sys_bpf syscall. Programs are then loaded into a specific

subsystem: USB, Bluetooth, or NFC.

The filter syntax we develop is concisely described by the

grammar shown in Appendix A. Filter rules are effectively

stateless expressions that abstract away from the eBPF lan-

guage syntax. For example, if we want to match on a specific

USB device’s vendor and product ID, such as a Dell optical

mouse, we would write:

usb.idVendor == 0x413c && usb.idProduct == 0x3010

If we want to include more than one Dell product, we could

write multiple rules, or we could consolidate them into a larger

expression. To match on a Dell mouse, keyboard, printer, and

Bluetooth adapter, we would write:

usb.idVendor == 0x413c && (
usb.idProduct == 0x3010 || // Mouse



usb.idProduct == 0x2003 || // Keyboard
usb.idProduct == 0x5300 || // Printer
usb.idProduct == 0x8501 // Bluetooth adapter

)

The LBMTOOL compiler supports multi-line nested sub-

expressions while following the C 89 Standard operator prece-

dence rules [5].

LBMTOOL is able to load a compiled LBM program into

a target subsystem TX (OUTPUT) or RX (INPUT) path

and specify a match action (i.e., ACCEPT or DROP). The

following usage has LBMTOOL compile and load a filter rule:

lbmtool --expression "usb.idProduct == 0x3010"
-o mouse.lbm

lbmtool --load mouse.lbm -t usb -A INPUT -j
ACCEPT

By providing descriptive error-checking in LBMTOOL and

developing a custom DSL that is easy to write in and reason

about, we achieve G6 – usability.

IV. IMPLEMENTATION

A. LBM Kernel Space

We divide the implementation of the LBM kernel space

into three parts: core, USB implementation, and Bluetooth

implementation. All LBM-specific code is located under the

security/lbm directory of the Linux kernel source tree,

as a new security component for the Linux kernel.

LBM Core: To load an eBPF program into LBM, we extend

the existing bpf syscall, sys_bpf. We define a new program

type BPF_PROG_LOAD_LBM to distinguish LBM calls from

other typical BPF usage. Unlike typical eBPF programs, which

normally only persist for the lifetime of the loading process,

LBM filters must persist after LBMTOOL exits. To extend

the lifetime of these programs, we pin them using the BPF

filesystem [17], essentially using the filesystem to increase the

reference count of the object.

Before a program is saved by the LBM core, the eBPF ver-

ifier checks every instruction of the program for any security

violations. Depending on the subsystem (USB or Bluetooth) of

the program, LBM provides different verifier callbacks, such

as LBM USB or LBM Bluetooth (as we will detail later),

thus making sure every memory access of the program is

meaningful, aligned, and safe.

Inside LBM, all eBPF programs are organized based on

the relevant subsystem and the direction of the filtering path

(i.e., TX or RX). We allow the same program to apply for

both the TX and RX paths when it is loaded using the BPF

syscall, and duplicate the program on TX and RX queues,

respectively. The separation of TX and RX paths is mainly

for performance, since it allows us to bypass programs that do

not interpose on a certain path during filtering. Additionally,

to avoid expensive locking, each program is protected by the

read-copy-update (RCU) [34] mechanism to enable concurrent

reads by different LBM components. LBM modules are also

organized according to subsystem and filter path, and protected

1 int lbm_filter_pkt(int subsys, int dir, void *pkt)
2 {
3 check_subsystem(subsys);
4 check_path(dir);
5 check_pkt(pkt);
6 res = ALLOW;
7 if (dir == TX) {
8 for_each_ebpf_in_db[subsys][dir] {
9 if (ebpf(subsys, dir, pkt) == DROP) {

10 res = DROP;
11 goto RET;
12 }}
13 for_each_kmod_in_db[subsys][dir] {
14 if (kmod(subsys, dir, pkt) == DROP) {
15 res = DROP;
16 goto RET;
17 }}
18 } else { /* Ditto for the RX */ }
19 RET:
20 return res; }

Figure 4: Pseudo-code of lbm_filter_pkt.

Subsystem # of Fields # of BPF-helpers # of Lines
USB 34 31 621

Bluetooth-HCI 30 29 683
Bluetooth-L2CAP 28 27 744

TOTAL 92 87 2048

Table III: LBM statistics per subsystem, including # of fields

exposed to the user space, # of BPF helpers implemented, and

# of lines of code changes.

by RCU. The pseudo code of lbm_filter_pkt, previously

mentioned in Section III-C, is presented in Figure 4.

To ease the management of LBM filters and modules, we

expose ten entries under /sys/kernel/security/lbm/,

including a global switch to enable/disable LBM; per-

subsystem switches to enable/disable debugging, profiling, and

statistics; and per-subsystem-per-path controls to view/remove

loaded filters and modules. The whole implementation of

LBM core is around 1.6K lines of code.

LBM USB: As shown in Figure 2, LBM hooks into

the Host Controller Device (HCD) core implementation to

cover both TX and RX paths. These hooks eventually call

lbm_filter_pkt before the packet reaches the USB core,

as demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_TX,
(void *)urb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_USB, LBM_DIR_RX,
(void *)urb);

Every USB packet (urb) then needs to go through the LBM

core for filtering before being sent to or received from USB

peripherals.

To support writing rules in LBMTOOL, we expose packet

metadata maintained by the kernel and packet fields defined

by the USB specification to the user space. To achieve this,

a naive approach would be to mirror the urb structure

to the userspace, while providing every field explicitly in

the filter DSL. Unfortunately, exposing raw kernel structures



to the userspace is a security risk, as doing so will leak

sensitive kernel pointer values, which can be used to break

KASLR [24]. Explicitly supporting every field is infeasible as

well, given the complexity of the protocol suites. As a trade-

off, we expose the most commonly recognized and used fields,

while providing special BPF helpers for accessing the rest of

the fields. These helpers allow LBM filters to support array

accesses to urb structures, thus enabling them to access every

field within a USB packet.

As shown in Table III, we expose 34 fields and implement

31 BPF helpers for the USB subsystem. Besides the special

BPF helpers mentioned above for accessing packet fields,

additional helpers are implemented for returning the length

of a buffer or string, or for providing access to the indirect

members of the urb structure. For fields that are direct

members, no helper is needed since we can access them using

an offset from within the urb. We group these fields together

in a struct and expose it to the user space, as listed below:

struct __lbm_usb {
__u32 pipe;
__u32 stream_id;
__u32 status;
__u32 transfer_flags;
__u32 transfer_buffer_length;
__u32 actual_length;
__u32 setup_packet;
__u32 start_frame;
__u32 number_of_packets;
__u32 interval;
__u32 error_count; };

Instead of exposing urb itself to the user space and using

the corresponding offsets, LBMTOOL only needs to know the

__lbm_usb struct and use offsets against it to directly access

these fields. LBM handles the translation of struct member

access within __lbm_usb into one within the kernel urb.

To help the BPF verifier understand the security constraints

of LBM and the scope of the USB subsystem, we implement

three callbacks within the bpf_verifier_ops struct used

by the verifier. We first explicitly enumerate all legal BPF

helpers for the verifier, including the 31 LBM USB BPF

helpers mentioned above as well as other common BPF

map helpers. We exclude any existing BPF helpers designed

for the networking subsystem. Therefore, the verifier would

reject any LBM USB filters that use BPF helpers besides

the ones specified. We then validate every member access

of __lbm_usb within the range, and forbid any memory

write operations. Finally, we rewrite the instructions accessing

__lbm_usb and map them into corresponding urb accesses.

LBM Bluetooth: The implementation for Bluetooth follows

the same procedure as for USB. We place hooks into the

Host Control Interface (HCI) layer of the Bluetooth subsystem,

as HCI talks to the Bluetooth hardware directly. While HCI

provides the lowest-level of packet abstraction for the upper

layers, it is not easy for normal users to interact with this layer

since it lacks support for high-level protocol elements, such as

connections and device addresses, which are better known to

Bluetooth users. To bridge this semantic gap, we add another

Bluetooth Peripherals

Host Controller Interface

LBM TX LBM RX

Bluetooth Core

Bluetooth Module

ACL

LBM TX

SCO

LBM RX
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Figure 5: LBM hooks inside the Bluetooth subsystem.

set of hooks into the Logical Link Control and Adaptation

Protocol (L2CAP) layer right above HCI, as shown in Figure 5.

These hooks are effectively calls to lbm_filter_pkt, as

demonstrated below:

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH,
LBM_DIR_RX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_TX, (void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_BLUETOOTH_L2CAP,
LBM_DIR_RX, (void *)skb);

The Bluetooth packet is encapsulated in a socket buffer,

or skb in kernel parlance, for both the HCI and the L2CAP

layers. During development, we encountered two challenges

while hooking the TX path of L2CAP. Unlike for the RX path,

the L2CAP layer provides multiple functions for sending out

L2CAP packets. Even worse, because of different Maximum

Transmission Unit (MTU) sizes between HCI and L2CAP,

an L2CAP packet is usually fragmented during packet con-

struction before being sent to the lower layer. One possible

solution would be to place LBM hooks inside every function

on the TX path and reassemble the packet there. Besides the

resulting code duplication, the major fault in this solution is

the maintenance burden of adding hooks to new TX functions.

To solve these challenges, we deploy only one LBM hook

at the Asynchronous Connection-Less (ACL) layer within HCI

and reassemble the original L2CAP packet there, while fully

covering all TX cases used by the L2CAP layer. Note that the

RX path still has the LBM hook inside the L2CAP layer, as

the kernel has already handled the packet reassembly.

As shown in Table III, we expose 30 and 28 protocol fields

from the HCI and L2CAP layers, respectively. Note that both

layers share the same 12 fields related with connections. For a

HCI packet, a BPF helper is provided to check if a connection

is established (indicated by the availability of these fields). For

L2CAP, a connection is always established. We also implement

29 and 27 BPF helpers for HCI and L2CAP, respectively,

which can retrieve the value of exposed fields. As with the



USB subsystem, we enumerate all the legal BPF helpers that

can be called within the Bluetooth subsystem, and restrict the

memory write operations in the verifier.

B. LBM User Space

LBMTOOL is responsible for compiling LBM rules to eBPF

programs and loading them into the kernel. Rules/filters pass

through standard compilation stages before ending up in the

kernel as compiled eBPF. To begin, we tokenize and parse the

input LBM filter. To simplify these initial steps we use Lark, a

dependency-free Python library that supports LALR(1) gram-

mars written in EBNF syntax. Lark processes our LBM rule

grammar and creates a working standalone parser. Once filters

are lexed, they are parsed into a Concrete Syntax Tree (CST),

also known as a parse tree [4]. The raw parse tree is then

shaped and canonicalized over multiple steps into a friendlier

representation known as an Abstract Syntax Tree (AST). These

steps include symbol (e.g., usb.idProduct) resolution, type

checking, and expression flattening. After processing, the AST

more accurately represents the LBM language semantics and

is flattened into a low-level Intermediate Representation (IR)

for backend processing.

Our IR is modeled on Three-Address Code (TAC) [4], and

it has a close mapping to the DSL semantics. Additionally,

we ensure that our IR conforms to Static Single Assignment

(SSA) form to simplify register allocation and any late IR

optimization passes. Once we have optimized our IR, it moves

to the eBPF instruction generator. There, we allocate registers

and translate each IR instruction into corresponding eBPF

instructions. Our register allocator maps an infinite number

of virtual registers from our SSA IR to a fixed number of

eBPF physical registers. To do this, it builds an interference

graph [22] of the IR statements in the program. This graph

encodes the lifetime of each virtual register throughout the

program and aids in quickly selecting appropriate physical reg-

isters during the allocation process. With registers allocated,

each IR statement is processed in order by the eBPF instruction

generation backend to produce assembly instructions. With

machine code produced, any remaining control transfer labels

are resolved by a final two-pass assembly step. The resulting

eBPF instructions are packaged into a LBM object file with

metadata for loading into the kernel. For an example of the

compiler’s output at each stage, visit Appendix B.

V. EVALUATION

To evaluate LBM, we first demonstrate how users can write

simple LBM rules to protect protocol stacks and defend against

known attacks through case studies. These case studies center

around the USB and Bluetooth stacks, ending with an proof-

of-concept implementation of NFC support in LBM. We divide

the cases between specific attacks from malicious peripherals

and general host system hardening against potential peripheral

threats. The next part of our evaluation focuses on benchmark-

ing the performance of LBM. We divide the benchmarking into

our testing setup, micro-benchmark, (providing LBM overhead

per packet), macro-benchmark (showing LBM overhead on the

application and system level), and scalability (covering 100

LBM rules and comparing LBM with previous solutions).

A. Case Studies

Kernel Protocol Stack Protection: To protect the kernel’s

USB protocol stack similar to USBFirewall, we extract proto-

col constraints from the USB specification and translate them

to LBM rules for loading via LBMTOOL. For example, to

ensure the response of a Get_Descriptor request is well-

formed during the enumeration phase, we write:

((usb.setup_packet != 0) && /* For enumeration */
(usb.request[0] == 0x80) && /* Get_Descriptor */
(usb.request[1] == 0x06) &&
/* Make sure response contains at least 2 bytes

*/
((usb.actual_length < 2) ||
/* Make sure the descriptor type matches */
((usb.request[3] != usb.data[1]) ||
/* Device descriptor */
((usb.request[3] == 1) && ((usb.data[0] != 18)

|| (usb.actual_length != 18))) ||
/* Configuration descriptor */
((usb.request[3] == 2) && ((usb.data[0] < 9)

|| (usb.actual_length < 9))) ||
/* String descriptor */
((usb.request[4] == 3) && ((usb.data[0] < 4)

|| (usb.actual_length < 4))))))

We first make sure the response has at least 2 bytes, for extract-

ing the length (usb.data[0]) and type (usb.data[1])

of the response. We reject the packet if there is a type

mismatch between request and response. Depending on the

descriptor type, we then make sure the response has the

minimum length required by the specification. To fully cover

all the responses during USB enumeration, we also check the

response returned by Get_Status in a similar fashion. We

use FaceDancer [30] and umap2 [57] to emulate a malicious

hub device fuzzing the host USB stack. Our stack protection

filters are able to drop all malformed packets during USB

enumeration.

To protect the Bluetooth stack within the kernel, we extract

the constraints from the Bluetooth specification and rewrite

them using LBMTOOL as follows:

/* HCI-CMD */
((bt.hci.type == 1) && (bt.hci.len < 3)) ||
/* HCI-ACL */
((bt.hci.type == 2) && (bt.hci.len < 4)) ||
/* HCI-SCO */
((bt.hci.type == 3) && (bt.hci.len < 3)) ||
/* HCI-EVT */
((bt.hci.type == 4) && (bt.hci.len < 2)))

This rule provides basic protection for the HCI layer.

Depending on the packet type, we make sure the response

has the minimum length required by the specification. We

also implemented similarly styled protection for the L2CAP

layer.

Preventing Data Leakage: In addition to propagating mal-

ware, USB storage devices are also used to steal sensitive

information from a computer. To tackle this threat, USBFIL-

TER implemented a plugin to drop the SCSI write command



on the TX path, thus preventing any data from being written

into a connected USB storage device; this plugin mechanism

is referred to as Linux USBFILTER Module (LUM).

Recall LBM is designed to support the features of existing

solutions. We are able to port the SCSI-write-drop LUM to

LBM with only around 10 lines of code changes (primarily

adjusting naming of callbacks and header files). In fact, any

LUM can be ported to LBM with similarly minimal changes,

because LUMs can be treated as a special case on USB in

LBM. As they are essentially kernel modules, neither LUMs

nor LBM module extensions are as constrained as the LBM

filter DSL, given that they are written in C and call kernel

APIs directly.

Trusted Input Devices: One of the most common BadUSB

attacks relies on the Human Interface Device (HID) class,

in which a malicious USB device behaves like a keyboard,

injecting keystrokes into the host machine. With LBM, we

can write a rule specifying a trusted input device, such that

keystrokes from all other input devices are dropped, as follows:

((usb.pipe == 1) && /* INT (Keystroke) */
((usb.manufacturer != "X") ||
(usb.product != "Y") ||
(usb.serial != "Z") ||
(usb.plugtime != 12345)))

For all keystrokes, we check against the expected

manufacturer, product, and serial number of the trusted input

device. This rules out any devices from different vendors or

different device models, and only permits keystrokes from

the trusted input device without completely disabling the

USB keyboard functionality. Similarly to writing udev rules,

system administrators can plug in their trusted input devices

to collect the device information before writing and loading

LBM filters into the kernel. In case of a BadUSB device

spoofing its identity, we extend the USB hub thread to report

the initial timestamp when a device was plugged in, and

expose this field to user space. Sysadmins can discover this

timestamp in dmesg and include it as part of a LBM rule.2

As such, even if a malicious device were able to mimic the

identity of the trusted input device, the malicious keystrokes

would be dropped because the initial timestamp would differ.

Securing USB Charging: A well-known defense against

BadUSB attacks by USB chargers is the “USB condom” [75],

which effectively physically disconnects the USB data pins

(D+/-) from the USB bus. Unfortunately, this prevents phones

that support USB Battery Charging [63] from drawing extra

power via the data wires. As a result, fully charging a phone

may take 15 times as long due to the lower amperage.

Additionally, a comparable device is not available for USB

Type-C. Using LBM, we could instead implement a software

USB data blocker:

((usb.busnum == 1) && (usb.portnum == 1))

2We assume these trusted input devices do not get unplugged and replugged
very often. Using this field solely is also possible, although then we can not
limit the USB packet type to include only keystrokes.

After applying this LBM rule to the RX path, we are able

to drop any data transmission from the physical USB port

1 under bus 1, thus making the port charge-only for any

connections. This LBM rule does not interfere with USB

Battery Charging, since the data wires are still physically

connected, and can be applied to any physical USB port,

regardless of whether or not it is Type-C.

Securing Bluetooth Invisible Mode: To prevent a Bluetooth

device from being scanned by another (potentially) malicious

device, such as during a Blueprinting [38] or BlueBag [21] at-

tack, Bluetooth introduces discoverable and non-discoverable

modes to devices. A device in non-discoverable mode does not

respond to inquires from other devices, thus hiding its presence

from outsiders. On one hand, the toggling of this mode can be

controlled from the user space, (e.g., using bluetoothctl,

which should require root permission). On the other hand,

any vulnerabilities within these user-space daemons and tools,

once exploited, might put the device into discoverable mode

again. To prevent this, we could define a LBM rule as follows:

((bt.hci.type == 1) && /* HCI-CMD */
(bt.hci.command.ogf == 3) && /* Discoverable */
(bt.hci.command.ocf == 58))

This rule detects the HCI command used to enable the

discoverable mode on the device. Once applied to the

TX path, the rule drops any request from the user space

attempting to put the device into discoverable mode. We

could write a similar rule to enforce non-connectable mode,

which is used to prevent any Bluetooth connection to the

device, even if its MAC address is known beforehand.

Controlling Bluetooth/BLE Connections: Along with the

rise of IoT devices, which often rely on Bluetooth Low Energy

(BLE), Android devices began to support BLE since version

4.3 [8], with iOS adding support from the iPhone 4S forward.

The Linux kernel Bluetooth stack (BlueZ [48]) also supports

both classic Bluetooth and BLE at the same time. Although it

is not uncommon to see a dual-mode device supporting both

classic Bluetooth and BLE, it is surprisingly challenging (if

not impossible) to enable only one of them while disabling the

other. [16] With LBM, enabling/disabling Bluetooth or BLE

connections is just a one-liner:

((bt.hci.conn == 1) && /* A link exists */
(bt.hci.conn.type == 0x80)) /* BLE link */

This LBM rule checks the connection type for each

Bluetooth or BLE packet, and drops the packet if the

connection is BLE, thus preventing unfamiliar IoT devices

from establishing a connection while still allowing classic

Bluetooth connections. It also provides a quick workaround

for BleedingBit attacks [12] without waiting for firmware

updates. Simply changing == 0x80 to != 0x80 achieves

the opposite effect, only permitting BLE connections and thus

providing a temporary defense against BlueBorne attacks [11].

Defending Against BlueBorne: BlueBorne attacks exploit

vulnerabilities within Bluetooth protocol stack implementa-



tions, by sending either malformed or specially crafted Blue-

tooth packets. Within the Linux kernel, this vulnerability

resulted from a missing check before using a local buffer. As

a result, a crafted packet could cause a kernel stack overflow,

potentially leading to remote code execution. Although the fix

was a straightforward one, adding the missing checks [68], and

applying patches to existing devices still requires additional

steps of rebuilding the kernel and flashing new firmware. With

LBM, we can write a simple rule to properly defend against

the potential kernel stack overflow:

((bt.l2cap.cid == 0x1) && /* L2CAP Signaling */
/* Configuration Response */
(bt.l2cap.sig.cmd.code == 0x5) &&
(bt.l2cap.sig.cmd.len >= 66))

We first pinpoint where the vulnerability was triggered,

which is at the L2CAP layer during configuration response.

Because the local buffer is 64 bytes and the first 4 bytes

are used for the header, the actual data buffer to hold

configuration options is 60 bytes. In the rule above,

bt.l2cap.sig.cmd.len denotes the total length of a

L2CAP command packet. Without counting the 6-byte header,

the actual payload size of a command packet is cmd.len
- 6. To defend against BlueBorne attacks, all we need is

to make sure (cmd.len - 6) < 60. Therefore, our rule,

which is written to drop any configuration response larger

than 66 bytes, will put a stop to BlueBorne. The above two

rules demonstrate that LBM provides a dynamic patching

capability to protocol stacks within the kernel, without

waiting for official kernel patches or firmware updates to be

upstreamed.

NFC Support: To further show the generality of LBM, we

extend LBM to support NFC. Unlike Bluetooth, NFC has three

different standards (software interfaces) for communicating

with NFC modules, including HCI [28], NCI [59], and Dig-

ital [58]. As a proof-of-concept, we focus on NCI, exposing

two protocol fields and implementing one BPF helper. The

number of additional lines of code added to the kernel and

LBMTOOL to make LBM support NFC is shown in Table IV.

Step 1: Placing LBM hooks. NCI provides unique interfaces

to cover both TX and RX transmission: nci_send_frame
and nci_recv_frame. As for other networking subsystems,

skb is used to carry NFC packets. We place the following

LBM hooks at the two interfaces:

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_TX,
(void *)skb);

lbm_filter_pkt(LBM_SUBSYS_INDEX_NFC, LBM_DIR_RX,
(void *)skb);

Step 2: Exposing protocol fields. We expose the packet

length (nfc.nci.len) and message type (nfc.nci.mt)

fields to the user space. The packet length is a member of

the struct __lbm_nfc exposed in the LBM user-space

header file. The message type is implemented as a BPF helper

calling other NCI APIs.

Step 3: Enhancing lbmtool. LBMTOOL is easily extensible

for new protocols, as we do for NFC. The internal LBM-

NFC Kernel lbmtool Total
# of lines 85 12 97

Table IV: The number of lines added to support NFC.

LBM Rule Purpose # of Insn Scope
USB-1 Stack Protection 72 Micro/Macro BM
USB-2 Stack Protection 25 Micro/Macro BM
USB-3 User Defined 22 Scalability BM
HCI-1 Stack Protection 81 Micro/Macro BM

L2CAP-1 Stack Protection 76 Micro/Macro BM

Table V: Details about the five LBM rules used during the

benchmarks.

Subsystem Min Max Avg Med Dev
USB 0.29 11.18 1.26 1.83 0.44

0.12 8.87 0.55 0.28 0.33
Bluetooth-HCI 1.16 17.87 2.81 2.70 0.62

0.27 15.67 0.98 0.77 0.47
Bluetooth-L2CAP 1.32 25.87 2.93 2.99 0.67

0.44 23.76 1.15 1.26 0.53

Table VI: LBM overhead in μs based on processing 10K

packets on the RX path. For each subsystem, the 1st row is

for normal LBM and the 2nd row is for LBM-JIT. In most

cases, the overhead of is within 1 μs when JIT is enabled.

rule code generation backend is abstracted from the specific

subsystem the rules will apply to. As such, the only changes

required to support NFC are to include a symbol descriptor

table for each variable exposed to the user space by the kernel.

Once these changes are incorporated, LBMTOOL accepts LBM

filters with NFC protocol fields and compiles them into eBPF

instructions.

B. Benchmark Setup

We performed all of our benchmarks on a workstation with

a 4-core Intel i5 CPU running at 3.2 GHz and 8 GB memory.

The peripheral used during testing include a 300 Mbps USB

2.0 WiFi adapter, a Bluetooth 4.0 USB 2.0 adapter, and a

500 GB USB 3.0 external storage device. Depending on the

benchmark, some subset of devices were connected.

We list all the LBM rules used during the benchmarks

in Table V. We deploy all the rules on the RX path, since our

protection target is the host machine. In addition to the “Stack

Protection” rules mentioned in the case studies, we include

“USB-3”, a user defined rule similar to usb.serial == "7777"

which drops the USB packet if the sending device’s serial

number is 7777. As no devices that we test have a serial

number matching this pattern, we mainly use this rule for the

scalability benchmark.

C. Micro-Benchmark

For USB testing, we load LBM rules “USB-1” and “USB-

2” into the system. We then capture 10K USB packets on the

RX path from the WiFi adapter. As shown in the first two

rows of Table VI, the average overhead is 1.26 μs per packet.

When JIT is enabled, the overhead is reduced to 0.55 μs.
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Figure 6: filebench across different kernel configurations.

All configurations achieve similar throughputs, meaning a

minimum performance impact from LBM.

For Bluetooth testing, we load LBM rules “HCI-1” and

“L2CAP-1” into the system. We implement a simple L2CAP

client/server protocol based on PyBluez [1] to generate 10K

packets on the RX path for the HCI and L2CAP layers,

respectively. As shown in the last four rows of Table VI, the

average overheads are 2.81 μs for HCI and 2.93 μs for L2CAP.

Again, with the help of JIT, we can reduce the overhead to

around 1 μs.

Takeaway: the general overhead introduced by LBM is
around 1 μs for most cases.

D. Macro-Benchmark

For USB, we load the rules “USB-1” and “USB-2" and use

filebench [50] to measure the throughput of the USB 3.0

external storage device. We chose the “fileserver” workload

model with 10K files, 128KB and 1MB mean file sizes, 10

working threads, and 10-min running time. This workload

generates roughly 1GB and 10GBs of files, respectively,

within the storage device. As shown in Figure 6, all kernel

configurations achieve similar throughput during our testing.

When the mean file size is 128KB, the total file size (1 GB)

can easily fit into the system page cache. Thus, we are able

to achieve close to 500 MB/s throughput (faster than the hard

drive’s maximum speed of 150 MB/s). When the mean file

size is 1MB, the total file size (10 GB) cannot completely fit

into the page cache, thus resulting in much lower throughput.

For Bluetooth, we load the rules “HCI-1” and “L2CAP-

1” and use l2ping [49] to benchmark the Round-Trip-Time

(RTT) for 10K pings. As with the USB testing, all kernel

configurations achieve similar RTTs of around 5 ms, as shown

in Figure 7. Because the overhead of LBM is under 1 μs in

general (Section V-C), the overhead contributed to the RTT

measurement is negligible.

To double-check that LBM introduces a minimal overhead

across the whole system, we use lmbench [55] to benchmark

the whole system across different kernel configurations. The

complete summary is available in Appendix C. In short, LBM

achieves comparable performance with the vanilla kernel.
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Figure 7: RTT of l2ping in milliseconds (lower is better)

based on 10K pings, across different kernel configurations. All

configurations achieve similar throughputs, meaning a minimal

performance impact from LBM.
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Figure 8: LBM overhead in μs based on varying numbers of

rules. While the general overhead increases as the number of

rules increases, the overhead of going through each individual

rule decreases, thus the total overhead is essentially amortized.

Takeaway: the overhead introduced by LBM is negligible
for applications and for the system as a whole.

E. Scalability

To understand the scalability of LBM, we load the rule

“USB-3” into the RX path once, 10 times, and 100 times.

As in the micro-benchmark, we record 10K USB packets

generated by the USB WiFi adapter and compute the overhead

of LBM going through these rules for each packet. As shown

in Figure 8, while the total overhead increases as the number

of rules increases, the average overhead of checking individual

rules decreases. The average overhead was 0.83 μs when there

was only one rule loaded. It decreased to 0.32 μs when there

were 100 rules loaded. Under JIT, the overhead was further

reduced to 0.23 μs. This might be the result of increased

cache hits from accessing the same rule in a loop. Even for

different rules, it is possible to observe this amortization effect,

as long as each rule occupies a different cache line. Also, in
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Figure 9: LBM vs. USBFILTER benchmark using

filebench with 10 same rules loaded respectively.

LBM introduces a minimum overhead comparing to the stock

kernel and performs better than USBFILTER in general.

general, more complicated rules will also induce more runtime

overhead.

We then compare LBM with USBFILTER using

filebench.3 Except the difference in kernel versions4, we

ran LBM and USBFILTER on the same physical machine. To

set up the benchmark, we load “USB-3” into the RX path 10

times on LBM and load an equivalent rule the same number

of times into USBFILTER. As shown in Figure 9, both LBM

and LBM-JIT show a minimum overhead comparing to the

stock kernel, and provide better throughput than USBFILTER

regardless the mean file size. This could be the result of both

kernel code improvements across versions and the design of

LBM (e.g., due to its use of eBPF). The throughput boost

is even clearer when the mean file size is 1MB and JIT is

enabled. Compared to USBFILTER, LBM-JIT improves the

throughput by roughly 60%.

Finally, we compare LBM with USBFILTER and USBFire-

wall using dd on VFAT filesystem with direct I/O enabled to

bypass the page cache. Since USBFirewall does not support

loading rules from the user space directly, we statically built

these 10 rules when compiling USBFirewall. As shown in Fig-

ure 10, comparing to their stock versions, all the solutions

show minimum overheads. The throughput of USBFirewall

does not vary much based on the block size. We tried both

the native FreeBSD version of dd and the GNU version. Both

demonstrate similar throughput regardless the block size. We

double check this by increasing the block size to 1 MB. When

the block size is beyond 16 KB, both LBM and USBFILTER

show better throughput than USBFirewall. Similarly, both

LBM and LBM-JIT have better throughput than USBFILTER.

Takeaway: compared to other state-of-the-art solutions,
LBM provides better scalability and performance.

3 Due to a kernel bug within USBFILTER, the front USB 3.0 ports could
not support USB 3.0 devices. We switched to the rear USB 3.0 ports in this
testing. We also tried to run USBFirewall. Unfortunately, FreeBSD does not
support filebench or EXT4 filesystem used by our external drive.

4LBM is running Linux kernel 4.13 while USBFILTER runs 3.13.
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Figure 10: LBM vs. USBFILTER vs. USBFirewall benchmark

using dd with 10 same rules loaded respectively. Comparing to

their stock versions, all the solutions show minimum overhead.

USBFirewall does not vary much based on the block size.

LBM performs better than USBFirewall and USBFILTER

when block size is beyond 16 KB in general.

VI. DISCUSSION

A. LBM vs. USBFILTER vs. USBFirewall

The LBM filter DSL is more expressive than the USB-

FILTER policy, which only supports concatenating equality

checks using logical AND. The LBM filter DSL supports

different arithmetic and logical operations, as well as changing

of operation precedence using parentheses. Compared to US-

BFILTER, LBM USB also doubles the number of protocol

fields exposed to the user space, although LBM does not

support pinning applications to peripherals.5 Nevertheless,

LBM enables more complicated and powerful filtering rules

than USBFILTER. Besides, any LUM can be converted into

an LBM module without much hassle. LBM USB has also

fully replicated functionality provided by USBFirewall, which

required a kernel recompile and reboot to make any rule

changes.

B. L2CAP Signaling in Bluetooth

Unlike L2CAP signaling in BLE, where each L2CAP packet

only carries a single command, L2CAP signaling in the Blue-

tooth classic may have packets containing multiple commands.

As we saw in the BlueBorne defense case study, if there is

a malicious configuration response command contained in a

L2CAP signaling packet, the entire payload will be dropped,

including other “innocent” commands if they exist.

One possible solution to such coarse-grained drops is to

separate each command from the same L2CAP signaling

packet into standalone packets. This requires packet parsing

and duplication in the early stage. Another solution is to add

a new customized hook in the place where each command

is extracted by the L2CAP stack. Our current implementation

5USBFILTER instrumented some USB device driver to support application
pinning. It is ad-hoc, rather than a generic method.



does not apply either solution, for performance and simplicity

considerations. From a security perspective, if one command

from a certain device is recognized as malicious, it seems

reasonable to drop other commands from the same device.

C. BPF Memory Write

For security considerations, we forbid memory writes in

LBM eBPF programs. While this restriction improves the

kernel’s security posture towards user-loaded code, we also

lose a powerful feature provided by eBPF and BPF helpers—

packet mangling, which allows for fields to be changed on

the fly. This feature has been employed by the networking

subsystem, e.g., for changing the source IP address and/or

the destination port number. For LBM, one potential use of

memory write is removing only malicious commands while

keeping others within the same L2CAP signaling packet intact.

As an intermediate step to enable memory write in LBM

programs, we can restrict the memory write ability to certain

BPF helpers. As long as these BPF helpers are safe, the

BPF verifier can still verify these programs by rejecting store

instructions as before.

D. BPF Helper Kernel Modules

Ideally, we should allow BPF helpers for each subsystem

to be implemented as a standalone kernel module, which can

be plugged in when needed. Unfortunately, this is forbidden

by the current eBPF design, and we follow the same design

principles for similar reasons. First of all, BPF helpers are

like syscalls in a system. The number of a BPF helper is like

the syscall number, which is part of the Application Binary

Interface (ABI) of the system. Although by introducing LBM,

we have essentially namespaced LBM BPF helpers from other

general and networking-specific helpers, these helpers still

share the same LBM namespace regardless their respective

subsystems. As a result, the number of a LBM BPF helper

implemented within a kernel module cannot be decided until

all used numbers are known, including the ones defined by

LBM internals and those defined in other BPF helper modules.

A possible solution here is to further namespace LBM BPF

helpers per subsystem, e.g., have USB helpers always start

with 100, Bluetooth helpers with 200, etc. Note that this

solution would consequently limit the number of helpers each

subsystem could have.

E. LLVM Support

LLVM began to support eBPF as an architectural backend in

early 2015 [71]. A typical workflow involves writing an eBPF

filter in C and compiling it using Clang. eBPF loaders such as

tc are able to parse the generated ELF file and load it into the

kernel [18]. While LLVM brings C into eBPF programming,

easing filter writing for C developers, we realized that eBPF

programming might still be challenging for sysadmins, who

need an easy and intuitive way to write eBPF filters; we

designed the LBM filter DSL with this in mind. We are

planning to support LLVM as well by adding a new eBPF

loader into LBM.

VII. LIMITATIONS

A. Stateless vs. Stateful Policy

LBM filters are designed to be policy-independent, although

a large part of the case studies presented stateless polices.

Whether the policy is stateless or stateful essentially depends

on what protocol fields and packet data are exposed to the

user space. For example, USB does not have a “session”

concept, and we could write useful LBM filters based on

just the device information (a.k.a., stateless policy). Bluetooth

has the “connection” concept in the L2CAP layer (like TCP

connections), so we could write LBM filters using this field

(a.k.a., stateful policy). Besides protocols fields defined by

standards, the Linux kernel also maintains some bookkeeping

data structures, e.g., counters. Exposing these kernel fields

would also help to create stateful polices.

The current LBM USB and Bluetooth implementations

focus on exposing basic protocol fields rather than stateful

variables. Nevertheless, we have noticed the potential of

stateful policies. For instance, we could write a stateful policy

to detect BleedingBit [12] attacks by observing a sequence

of multiple BLE advertising packets with a certain bit off

followed by another BLE advertising packet with that bit on.

B. DMA-Oriented Protocols

We have not instantiated LBM on Thunderbolt, HDMI, or

DisplayPort, although it is indeed possible to support these

DMA-oriented protocols using LBM.6 Since LBM works

at the packet layer, we are able to filter packets for these

protocols as long as the concept of packet, given a protocol,

is defined by the standard and implemented by the kernel.

For example, DisplayPort defines different packets to carry

different payloads such as stream and audio [46], implemented

as such within the kernel. Thunderbolt, however, is a propri-

etary standard. It is not clear whether the protocol itself is

packetized, and the only packet-level message available within

the kernel is Thunderbolt control request/response instead of

data transfer. Another challenge to supporting these protocols

comes from determining the proper hook placement for com-

plete mediation. DisplayPort is not a standalone subsystem

but rather a component of Direct Rendering Manager (DRM)

inside the kernel. Thunderbolt does not have a core layer but

only provides few drivers due to the limited hardware devices.

C. Operating Systems Dependency

Although LBM is built upon the Linux kernel, it is possible

to apply LBM to other operating systems. To achieve that, we

need the target operating system to support a generic in-kernel

packet filtering mechanism such as eBPF. The classic BPF is

not enough because LBM relies on calling kernel APIs within

filters to access different kernel data. While it is non-trivial to

extend the classic BPF to eBPF, some porting effort has been

done for FreeBSD to support eBPF [35]. The other require-

ment is a software architecture enabling complete-mediation

hook placement for different peripherals. For instance, it is

6USB is also DMA-oriented.



possible to mediate all USB packets within the FreeBSD

USB subsystem, as proven by USBFirewall. Nevertheless, it

might be challenging to port LBM to Windows, since it has

a different packet filtering mechanism [85] and it is closed-

source.

D. lbmtool Limitations

LBMTOOL currently does not support LBM filter consis-

tency checking, meaning it is possible to have two LBM

filters conflict with each other. Regarding eBPF instruction

generation, LBMTOOL does not support stack allocations when

the return value of BPF helpers is beyond 8 bytes (width of an

eBPF register). Manual assembly is needed to manipulate the

stack for those BPF helpers. LBMTOOL also does not support

lazy evaluation on BPF helpers. They are always called at first

to retrieve all the values of protocols fields needed before the

actual evaluation of the LBM filter DSL expression. These are

merely the current limitations of the custom compiler itself and

could be eliminated with additional code.

VIII. RELATED WORK

Peripheral Security Defenses: A number of solutions have

considered aspects of defenses against malicious peripherals.

By treating USB kernel drivers as capabilities, GoodUSB [76]

asks for user’s expectation about the device before loading

the drivers. Cinch [9] interposes on the USB bus by isolating

the suspicious USB device within a VM environment, with

the help of IOMMU and hypervisors, but imposes substantial

performance overhead and considerable architectural changes

to systems it is deployed upon. USBFILTER [79] is a USB

packet filtering mechanism built into the Linux kernel. Users

can write simple filtering rules and pass them into the kernel

space. USBFirewall [43] protects the USB protocol stack

within FreeBSD from malformed packets by generating the

USB packet parser from Haskell. Other solutions focus on

developing more secure devices; for example Kells [20] and

ProvUSB [77] protect USB devices from malicious hosts

at the granularity of partitions and blocks, respectively, but

require the deployment of new peripheral devices. Solutions

such as FirmUSB [39] allow analysis of a device for malicious

intent but require a means of accessing its firmware. For more

details regarding other related defenses, we refer readers

to a systematic study on USB security [80]. Thunderbolt 3

also introduced security levels, and boltctl [44] is used to

set security levels for different peripherals on Linux. These

security levels are designed to control the creation of PCIe

channels from peripherals rather than high-level packets.

As previously discussed, LBM is designed as a generic

framework working at the packet layer, not only enabling

existing solutions such as USBFILTER and USBFirewall,

but also covering other peripherals such as Bluetooth and NFC.

eBPF-based Solutions: BPF Compiler Collections (BCC) [42]

provides a Python interface for writing, compiling, and loading

eBPF programs. Its backend is still LLVM and C programing.

eXpress DataPath (XDP) [36] provides eBPF hooks within

the NIC drivers, filtering packets before skb is created to

store the packet. Network Flow Processor (NFP) [45] allows

filtering packets within the NIC by JITing eBPF programs

into native NIC instructions and running them on the NIC

directly. eBPF tracing tools [33] provide an alternative for

DTrace on Linux. Bpfilter [73] is an ongoing project trying

to replace the iptables firewall. InKeV [3] is a network

virtualization solution allowing inserting network functions

dynamically using eBPF. Hyperupcalls [6] allows VMs to

load eBPF programs and asks hypervisors to execute them.

One can treat these hyperupcalls as another form of BPF

helpers. On the security side, eBPF has been hardened against

JIT spray attacks [64] and Spectre attacks [47], [72], [19].

New file mode and LSM hooks are also added for eBPF

program permission control to remove the dependency on

“CAP_SYS_ADMIN” [29]. LBM expands the scope of eBPF

usage by exploring peripheral space.

Linux Kernel Security Frameworks: Linux Security Mod-

ules (LSM) [86] is a general framework to implement MAC

on Linux, by providing hundreds of hooks for security-

sensitive operations within the kernel. Integrity Measurement

Architecture (IMA) [65] leverages TPM to measure the kernel

image as well as user-space applications. Android Security

Modules (ASM) [40] promotes security extensibility to the

Android platform, by adding new authorization hooks within

Android OS APIs. Linux Provenance Modules (LPM) [14]

provides a whole-system provenance framework by mirroring

LSM hooks. Seccomp [27] uses the classic BPF filter to limit

the number of syscalls that can be invoked by a process or

container. Landlock [66] controls how a process could access

filesystem objects by writing polices in C within applications

and compiling them into eBPF programs using LLVM. Guar-

dat [82] presents a high-level policy language for mediating

I/O events, but is implemented at the storage layer, above the

peripheral layer, and would thus not provide defenses against

protocol-level attacks. While we have seen kernel frameworks

covering different aspects of security concerns, LBM is the

first framework for unifying defenses across protocols against

malicious peripherals.

IX. CONCLUSION

In this paper we described LBM, an extensible security

framework for defending against malicious peripherals. LBM

implements a high-level filtering language for creating periph-

eral policies, which compile into eBPF instructions for loading

into the Linux kernel to provide performance and extensibil-

ity. Within this framework we added support for the USB,

Bluetooth, and NFC protocols, described the design process

of LBM, and demonstrated specific cases of how LBM could

be leveraged to harden the operating system’s protocol stacks.

Our evaluation of LBM showed that it performs as well as or

better than previous solutions, while only introducing overhead

within 1 μs per packet in most cases. LBM is practical and to

the best of our knowledge, is the first security framework de-

signed to provide comprehensive protection within the Linux



kernel peripheral subsystem, covering different subsystems

while supporting and unifying existing defensive solutions.
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APPENDIX

A. Frontend Grammar

〈expr〉 ::= 〈logical-or〉
〈logical-or〉 ::= 〈logical-and〉 (‘||’ 〈logical-and〉)*
〈logical-and〉 ::= 〈comparison〉 (‘&&’ 〈comparison〉)*
〈comparison〉 ::= 〈atom〉 (〈comparison-op〉 〈atom〉)*
〈comparison-op〉 ::= ‘<’ | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ’!=’

〈access〉 ::= ‘[’ 〈number〉 ‘:’ 〈number〉 ‘]’

〈attribute〉 ::= ‘.’ 〈IDENTIFIER〉
〈struct〉 ::= 〈IDENTIFIER〉 〈attribute〉* 〈access〉?
〈number〉 ::= 〈DEC_NUMBER〉 | 〈HEX_NUMBER〉
〈string〉 ::= 〈STRING〉
〈atom〉 ::= 〈number〉 | ‘-’ 〈number〉

| 〈struct〉
| 〈string〉
| ‘(’ 〈expr〉 ‘)’

〈DEC_NUMBER〉 ::= 〈DIGIT〉+
〈HEX_NUMBER〉 ::= ‘0x’ 〈HEXDIGIT〉+
〈LETTER〉 ::= ‘a’ ... ‘z’ | ‘A’ ... ‘Z’

〈STRING〉 ::= ‘"’ (‘\"’ | /[^‘"’]/)* ‘"’

〈DIGIT〉 ::= ‘0’...‘9’

〈HEXDIGIT〉 ::= ‘a’ ... ‘f’ | ‘A’ ... ‘F’ | 〈DIGIT〉
〈IDENTIFIER〉 ::= (‘_’ | 〈LETTER〉) ( ‘_’ | 〈LETTER〉 | 〈DIGIT〉)*
Figure 11: The Extended Backus-Naur Form (EBNF) of our

constructed LBM expression grammar.

B. Compiler Example

LBM Program

usb.idVendor == 0x413c && usb.idProduct == 0x3010

Intermediate Representation

0: t1 := call(lbm_usb_get_idVendor)
1: t0 := binop(EQ, t1, 16700)
2: t3 := call(lbm_usb_get_idProduct)
3: t2 := binop(EQ, t3, 12304)
4: t4 := binop(AND, t0, t2)

eBPF Assembly

LSTART:
MOV64_REG(REG_9, REG_1)
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idVendor)
MOV64_REG(REG_1, REG_0)
MOV64_IMM(REG_6, 1)
JMP_IMM(JEQ, REG_1, 16700, L1_)
MOV64_IMM(REG_6, 0)

L1_:
MOV64_REG(REG_1, REG_9)
CALL_FUNC(FUNC_lbm_usb_get_idProduct)
MOV64_REG(REG_2, REG_0)
MOV64_IMM(REG_3, 1)
JMP_IMM(JEQ, REG_2, 12304, L2_)
MOV64_IMM(REG_3, 0)

L2_:
JMP_IMM(JEQ, REG_6, 0, L3_)
JMP_IMM(JEQ, REG_3, 0, L3_)
MOV64_IMM(REG_4, 1)
JMP_A(L4_)

L3_: MOV64_IMM(REG_4, 0)
L4_:

JMP_IMM(JNE, REG_4, 0, L5_)
L6_: MOV64_IMM(REG_0, 0)

EXIT_INSN()
L5_: MOV64_IMM(REG_0, 1)
LEND: EXIT_INSN()

Figure 12: The compilation stages of an LBM expression.

C. lmbench

Table VII presents the complete summary of lmbench
results from Section V-D We use lmbench to benchmark

the whole system across different kernel configurations and

demonstrate that LBM does indeed introduce minimal over-

head across the whole system.



Processor & Processes (ns)
Null call Null I/O Stat Open/Close Select TCP Signal install Signal Handle Fork Execute Exec. Shell

Vanilla 0.23 0.32 0.65 1.39 6.26 0.27 0.81 151. 497. 1425
LBM 0.22 0.32 0.66 1.38 5.65 0.27 0.80 141. 400. 1411
LBM-JIT 0.22 0.32 0.66 1.38 5.65 0.27 0.80 92.6 415. 1446

Basic integer operations (ns)
bit add div mod

Vanilla 0.2800 0.1400 6.1100 6.5700
LBM 0.2800 0.1400 6.0200 6.4900
LBM-JIT 0.2800 0.1400 6.0300 6.5300

Basic uint64 operations (ns)
bit div mod

Vanilla 0.280 12.0 11.7
LBM 0.280 12.1 11.7
LBM-JIT 0.280 12.1 11.7

Basic float operations (ns)
add mul div bogo

Vanilla 0.8400 1.3900 3.7800 1.9500
LBM 0.8400 1.3900 3.6800 1.9500
LBM-JIT 0.8400 1.3900 3.6800 1.9600

Basic Double Operations (ns)
add mul div bogo

Vanilla 0.8400 1.3900 5.6200 3.9000
LBM 0.8400 1.3900 5.6300 3.9000
LBM-JIT 0.8400 1.3900 5.6500 3.9100

Context Switching (ns)
2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Vanilla 1.7300 1.6600 2.4000 4.2000 5.0700 4.24000 5.79000
LBM 1.6500 1.5800 2.1900 3.3800 4.9100 4.11000 7.77000
LBM-JIT 1.6100 1.5000 2.2600 3.2200 7.5000 3.28000 7.55000

Local Communication Latencies (us)
2p/0K context switch Pipe AF UNIX UDP TCP TCP/connection

Vanilla 1.730 5.028 6.97 9.127 11.5 17.
LBM 1.650 4.998 6.31 8.973 11.3 17.
LBM-JIT 1.610 5.068 7.27 8.966 11.4 17.

File & VM system latencies (us)
0K File Cre. 0K File Del. 10K File Cre. 10K File Del. Mmap Latency Prot. Fault Page Fault 100 FD Select

Vanilla 5.7323 3.8630 13.3 6.8787 6493.0 0.501 0.22380 1.609
LBM 5.7247 3.8566 13.2 7.0278 6518.0 0.502 0.22080 1.602
LBM-JIT 5.7531 3.8511 13.7 6.8543 6523.0 0.500 0.22310 1.613

Local Communication bandwidths (MB/s), Larger is better
Pipe AF UNIX TCP File Reread Mmap Reread Bcopy (libc) Bcopy (custom) Memory Read Memory Write

Vanilla 5597 12.K 7539 7455.9 15.0K 8126.0 5886.8 14.K 8528.
LBM 5606 12.K 7365 7473.6 15.0K 8193.2 5911.6 14.K 8535.
LBM-JIT 5686 12.K 7466 7494.9 15.0K 8169.2 5909.9 14.K 8542.

Memory latencies (ns)
Mhz L1 Cache L2 Cache Main memory Random memory

Vanilla 3192 1.1140 3.3420 15.2 84.1
LBM 3192 1.1140 3.3420 14.6 84.9
LBM-JIT 3192 1.1140 3.3430 15.2 83.9

Table VII: lmbench results for a Vanilla kernel, LBM, and LBM-JIT.
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